Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 May;49(5):1025–1034. doi: 10.1172/JCI106302

Hemolysis of “stress” reticulocytes: a source of erythropoietic bilirubin formation

Stephen H Robinson 1,2, Maria Tsong 1,2
PMCID: PMC535754  PMID: 5441538

Abstract

The formation of bilirubin-14C was measured in rats given transfusions of red blood cells containing 14C-labeled hemoglobin heme. Per cent conversion of hemoglobin-14C to bilirubin was 4 times greater with transfusion of “stress” reticulocytes from rats responding to hemorrhage than with normal reticulocytes from unstimulated donors. When the increased number of labeled reticulocytes produced by hemorrhaged donors was also considered, the total magnitude of labeled bilirubin formation was almost 20 times higher with stress as compared to normal reticulocytes. The findings were not influenced by splenectomy of either donor or recipient rats, iron loading of donors, or bleeding of recipients. However, bilirubin-14C formation fell off progressively as studies were performed at longer intervals after erythroid stimulation.

Total bilirubin-14C formation in rats transfused with stress reticulocytes was compared to the production of early-labeled bilirubin from all potential sources in intact rats bled according to the same schedule used in the transfusion experiments. It is estimated that degradation of hemoglobin from sress reticulocytes accounts for virtually the entire rise in erythropoietic bilirubin formation from 24 to 96 hr after glycine-2-14C administration, but that additional sources make a major contribution before that time. These findings are consistent with the concept that destruction of immature erythroid cells in the peripheral blood, and probably in the bone marrow, accompanies the physiologic response to erythroid stimulation.

Full text

PDF
1025

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERENDES M. The proportion of reticulocytes in the erythrocytes of the spleen as compared with those of circulating blood, with special reference to hemolytic states. Blood. 1959 May;14(5):558–563. [PubMed] [Google Scholar]
  2. BERLIN N. I., LOTZ C. Life span of the red blood cell of the rat following acute hemorrhage. Proc Soc Exp Biol Med. 1951 Dec;78(3):788–790. doi: 10.3181/00379727-78-19220. [DOI] [PubMed] [Google Scholar]
  3. BORSOOK H., LINGREL J. B., SCARO J. L., MILLETTE R. L. Synthesis of haemoglobin in relation to the maturation of erythroid cells. Nature. 1962 Oct 27;196:347–350. doi: 10.1038/196347a0. [DOI] [PubMed] [Google Scholar]
  4. BRECHER G., STOHLMAN F., Jr Reticulocyte size and erythropoietic stimulation. Proc Soc Exp Biol Med. 1961 Aug-Sep;107:887–891. doi: 10.3181/00379727-107-26785. [DOI] [PubMed] [Google Scholar]
  5. Barrett P. V., Cline M. J., Berlin N. I. The association of the urobilin "early peak" and erythropoiesis in man. J Clin Invest. 1966 Nov;45(11):1657–1667. doi: 10.1172/JCI105473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Card R. T., Valberg L. S. Characteristics of shortened survival of stress erythrocytes in the rabbit. Am J Physiol. 1967 Sep;213(3):566–572. doi: 10.1152/ajplegacy.1967.213.3.566. [DOI] [PubMed] [Google Scholar]
  7. GIBLETT E. R., COLEMAN D. H., PIRZIOBIROLI G., DONOHUE D. M., MOTULSKY A. G., FINCH C. A. Erythrokinetics: quantitative measurements of red cell production and destruction in normal subjects and patients with anemia. Blood. 1956 Apr;11(4):291–309. [PubMed] [Google Scholar]
  8. GRAY C. H., NEUBERGER A., SNEATH P. H. A. Studies in congenital porphyria. 2. Incorporation of 15N in the stercobilin in the normal and in the porphyric. Biochem J. 1950 Jun-Jul;47(1):87–92. doi: 10.1042/bj0470087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRAY C. H., SCOTT J. J. The effect of haemorrhage on the incorporation of [alpha-14C]Glycine into stercobilin. Biochem J. 1959 Jan;71(1):38–42. doi: 10.1042/bj0710038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRINSTEIN M., BANNERMAN R. M., VAVRA J. D., MOORE C. V. Hemoglobin metabolism in thalassemia. In vivo studies. Am J Med. 1960 Jul;29:18–32. doi: 10.1016/0002-9343(60)90004-8. [DOI] [PubMed] [Google Scholar]
  11. Ganzoni A., Hillman R. S., Finch C. A. Maturation of the macroreticulocyte. Br J Haematol. 1969 Jan-Feb;16(1):119–135. doi: 10.1111/j.1365-2141.1969.tb00384.x. [DOI] [PubMed] [Google Scholar]
  12. ISRAELS L. G., YAMAMOTO T., SKANDERBEG J., ZIPURSKY A. Shunt bilirubin: evidence for two components. Science. 1963 Mar 15;139(3559):1054–1055. doi: 10.1126/science.139.3559.1054. [DOI] [PubMed] [Google Scholar]
  13. Ibrahim G. W., Schwartz S., Watson C. J. Early labeling of bilirubin from glycine and delta-aminolevulinic acid in bile fistula dogs, with special reference to stimulated versus suppressed erythropoiesis. Metabolism. 1966 Dec;15(12):1129–1139. doi: 10.1016/0026-0495(66)90103-x. [DOI] [PubMed] [Google Scholar]
  14. Ibrahim G. W., Schwartz S., Watson C. J. The conversion of protoporphyrin-C14 to heme compounds and bilirubin in dogs. Metabolism. 1966 Dec;15(12):1120–1128. doi: 10.1016/0026-0495(66)90102-8. [DOI] [PubMed] [Google Scholar]
  15. JAMES G. W., 3rd, ABBOTT L. D., Jr Stercobilin N15 excretion in refractory anemia. Trans Am Clin Climatol Assoc. 1961;73:110–120. [PMC free article] [PubMed] [Google Scholar]
  16. JANDL J. H. The agglutination and sequestration of immature red cells. J Lab Clin Med. 1960 May;55:663–681. [PubMed] [Google Scholar]
  17. LABBE R. F., NISHIDA G. A new method of hemin isolation. Biochim Biophys Acta. 1957 Nov;26(2):437–437. doi: 10.1016/0006-3002(57)90033-1. [DOI] [PubMed] [Google Scholar]
  18. LONDON I. M., WEST R., SHEMIN D., RITTENBERG D. On the origin of bile pigment in normal man. J Biol Chem. 1950 May;184(1):351–358. [PubMed] [Google Scholar]
  19. LONDON I. M., WEST R. The formation of bile pigment in pernicious anemia. J Biol Chem. 1950 May;184(1):359–364. [PubMed] [Google Scholar]
  20. NEUBERGER A., NIVEN J. S. F. Haemoglobin formation in rabbits. J Physiol. 1951 Feb;112(3-4):292–310. doi: 10.1113/jphysiol.1951.sp004530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagai K., Kakishita E. Destruction of immature erythrocytes measured by bilirubin excretion. Blood. 1969 May;33(5):717–726. [PubMed] [Google Scholar]
  22. ROBINSON S., VANIER T., DESFORGES J. F., SCHMID R. Jaundice in thalassemia minor: a consequence of "ineffective erythropoiesis". N Engl J Med. 1962 Sep 13;267:523–529. doi: 10.1056/NEJM196209132671101. [DOI] [PubMed] [Google Scholar]
  23. Robinson S. H. Increased bilirubin formation from nonhemoglobin sources in rats with disorders of the liver. J Lab Clin Med. 1969 Apr;73(4):668–676. [PubMed] [Google Scholar]
  24. Robinson S. H. Increased formation of early-labeled bilirubin in rats with iron deficiency anemia: evidence for ineffective erythropoiesis. Blood. 1969 Jun;33(6):909–917. [PubMed] [Google Scholar]
  25. Robinson S. H., Lester R., Crigler J. F., Jr, Tsong M. Early-labeled peak of bile pigment in man. Studies with glycine-14C and delta-aminolevulinic acid-3H. N Engl J Med. 1967 Dec 21;277(25):1323–1329. doi: 10.1056/NEJM196712212772501. [DOI] [PubMed] [Google Scholar]
  26. Robinson S. H., Owen C. A., Jr, Flock E. V., Schmid R. Bilirubin formation in the liver from nonhemoglobin sources. Experiments with isolated, perfused rat liver. Blood. 1965 Dec;26(6):823–829. [PubMed] [Google Scholar]
  27. Robinson S. H. The origins of bilirubin. N Engl J Med. 1968 Jul 18;279(3):143–149. doi: 10.1056/NEJM196807182790306. [DOI] [PubMed] [Google Scholar]
  28. Robinson S. H., Tsong M., Brown B. W., Schmid R. The sources of bile pigment in the rat: studies of the "early labeled" fraction. J Clin Invest. 1966 Oct;45(10):1569–1586. doi: 10.1172/JCI105463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SCHWARTZ S., WIKOFF H. M. The relation of erythrocyte coproporphyrin and protoporphyrin to erythropoiesis. J Biol Chem. 1952 Feb;194(2):563–573. [PubMed] [Google Scholar]
  30. SMITH I. D., SIMMONDS W. J. The changes in cardiac output, right atrial pressure and blood volume in haemorrhagic anaemias in unanaesthetized rabbits. Aust J Exp Biol Med Sci. 1954 Apr;32(2):241–252. doi: 10.1038/icb.1954.28. [DOI] [PubMed] [Google Scholar]
  31. Schmid R., Marver H. S., Hammaker L. Enhanced formation of rapidly labelled bilirubin by phenobarbital: hepatic microsomal cytochromes as a possible source. Biochem Biophys Res Commun. 1966 Aug 12;24(3):319–328. doi: 10.1016/0006-291x(66)90158-6. [DOI] [PubMed] [Google Scholar]
  32. Stryckmans P. A., Cronkite E. P., Giacomelli G., Schiffer L. M., Schnappauf H. The maturation and fate of reticulocytes after in vitro labeling with tritiated amino acids. Blood. 1968 Jan;31(1):33–43. [PubMed] [Google Scholar]
  33. WHYTE H. M. Plasma and blood volume in anaemia and the effect of transfusion. Australas Ann Med. 1956 Aug;5(3):192–202. doi: 10.1111/imj.1956.5.3.192. [DOI] [PubMed] [Google Scholar]
  34. YAMAMOTO T., SKANDERBEG J., ZIPURSKY A., ISRAELS L. G. THE EARLY APPEARING BILIRUBIN: EVIDENCE FOR TWO COMPONENTS. J Clin Invest. 1965 Jan;44:31–41. doi: 10.1172/JCI105124. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES