Abstract
A procedure was developed for the per cell estimation of cytochrome P-450-dependent monooxygenase activities in cultures and whole cell suspensions of murine epidermal keratinocytes (MEKs). Murine keratinocytes cultured in medium containing less than or equal to 0.04 mM Ca2+ can be induced to differentiate by raising medium Ca2+ concentrations to 1.2 mM. The per cell activities of the monooxygenases 7-ethoxyresorufin O-deethylase (7-ER) and 7-ethoxycoumarin O-deethylase (7-EC) were elevated greater than or equal to 2090% and approximately 460%, respectively, within 13-24 hr of Ca2+ shift. These increases could be completely suppressed by supplementation of culture medium with actinomycin D or cycloheximide immediately prior to Ca2+ shift. After prolonged culture in low Ca2+ medium, some MEKs detached from the monolayer. These detached cells had the characteristics of differentiating MEKs but did not have elevated 7-EC or 7-ER activities. Percoll gradient centrifugation of freshly isolated dorsal skin MEKs was used to prepare four subpopulations that differed in their stages of terminal differentiation. 7-EC and 7-ER activities varied among these subpopulations and correlated with the degree of MEK differentiation. Specifically, the lowest and highest per cell activities (greater than 7-fold difference) were in the basal and most differentiated spinous cell populations, respectively. Collectively, the current studies demonstrate that in vivo P-450 activities are markedly different in proliferating and differentiating MEKs and suggest that constitutive P-450 expression may be modulated as a function of changes in Ca2+ concentration that occur during keratinocyte terminal differentiation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem. 1978 Apr;85(2):488–491. doi: 10.1016/0003-2697(78)90245-2. [DOI] [PubMed] [Google Scholar]
- Berry D. L., Bracken W. R., Slaga T. J., Wilson N. M., Butty S. G., Juchau M. R. Benzo(a)pyrene metabolism in mouse epidermis. Analysis by high pressure liquid chromatography and DNA binding. Chem Biol Interact. 1977 Aug;18(2):129–142. doi: 10.1016/0009-2797(77)90001-1. [DOI] [PubMed] [Google Scholar]
- Bickers D. R., Dutta-Choudhury T., Mukhtar H. Epidermis: a site of drug metabolism in neonatal rat skin. Studies on cytochrome P-450 content and mixed-function oxidase and epoxide hydrolase activity. Mol Pharmacol. 1982 Jan;21(1):239–247. [PubMed] [Google Scholar]
- Buchmann A., Kuhlmann W., Schwarz M., Kunz W., Wolf C. R., Moll E., Friedberg T., Oesch F. Regulation and expression of four cytochrome P-450 isoenzymes, NADPH-cytochrome P-450 reductase, the glutathione transferases B and C and microsomal epoxide hydrolase in preneoplastic and neoplastic lesions in rat liver. Carcinogenesis. 1985 Apr;6(4):513–521. doi: 10.1093/carcin/6.4.513. [DOI] [PubMed] [Google Scholar]
- Coomes M. W., Norling A. H., Pohl R. J., Müller D., Fouts J. R. Foreign compound metabolism by isolated skin cells from the hairless mouse. J Pharmacol Exp Ther. 1983 Jun;225(3):770–777. [PubMed] [Google Scholar]
- DiGiovanni J., Gill R. D., Nettikumara A. N., Colby A. B., Reiners J. J., Jr Effect of extracellular calcium concentration on the metabolism of polycyclic aromatic hydrocarbons by cultured mouse keratinocytes. Cancer Res. 1989 Oct 15;49(20):5567–5574. [PubMed] [Google Scholar]
- DiGiovanni J., Miller D. R., Singer J. M., Viaje A., Slaga T. J. Benzo(a)pyrene metabolism in primary cultures of mouse epidermal cells and untransformed and transformed epidermal cell lines. Cancer Res. 1982 Jul;42(7):2579–2586. [PubMed] [Google Scholar]
- Dipple A., Pigott M. A., Bigger C. A., Blake D. M. 7,12-dimethylbenz[a] anthracene--DNA binding in mouse skin: response of different mouse strains and effects of various modifiers of carcinogenesis. Carcinogenesis. 1984 Aug;5(8):1087–1090. doi: 10.1093/carcin/5.8.1087. [DOI] [PubMed] [Google Scholar]
- Elias P. M., Williams M. L. Retinoids, cancer, and the skin. Arch Dermatol. 1981 Mar;117(3):160–168. [PubMed] [Google Scholar]
- Eling T., Curtis J., Battista J., Marnett L. J. Oxidation of (+)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by mouse keratinocytes: evidence for peroxyl radical- and monoxygenase-dependent metabolism. Carcinogenesis. 1986 Dec;7(12):1957–1963. doi: 10.1093/carcin/7.12.1957. [DOI] [PubMed] [Google Scholar]
- Fischer S. M., Nelson K. D., Reiners J. J., Jr, Viaje A., Pelling J. C., Slaga T. J. Separation of epidermal cells by density centrifugation: a new technique for studies on normal and pathological differentiation. J Cutan Pathol. 1982 Feb;9(1):43–49. doi: 10.1111/j.1600-0560.1982.tb01040.x. [DOI] [PubMed] [Google Scholar]
- Fürstenberger G., Gross M., Schweizer J., Vogt I., Marks F. Isolation, characterization and in vitro cultivation of subfractions of neonatal mouse keratinocytes: effects of phorbol esters. Carcinogenesis. 1986 Oct;7(10):1745–1753. doi: 10.1093/carcin/7.10.1745. [DOI] [PubMed] [Google Scholar]
- Giachelli C. M., Omiecinski C. J. Developmental regulation of cytochrome P-450 genes in the rat. Mol Pharmacol. 1987 May;31(5):477–484. [PubMed] [Google Scholar]
- Guo J. F., Brown R., Rothwell C. E., Bernstein I. A. Levels of cytochrome P-450-mediated aryl hydrocarbon hydroxylase (AHH) are higher in differentiated than in germinative cutaneous keratinocytes. J Invest Dermatol. 1990 Jan;94(1):86–93. doi: 10.1111/1523-1747.ep12873939. [DOI] [PubMed] [Google Scholar]
- Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
- Hosomi J., Nemoto N., Kuroki T. Metabolism of benzo[a]pyrene and other carcinogens in mouse epidermal keratinocytes in culture. Gan. 1982 Dec;73(6):879–886. [PubMed] [Google Scholar]
- Ichikawa T., Hayashi S., Noshiro M., Takada K., Okuda K. Purification and characterization of cytochrome P-450 induced by benz(a)anthracene in mouse skin microsomes. Cancer Res. 1989 Feb 15;49(4):806–809. [PubMed] [Google Scholar]
- Liddle C., Murray M., Farrell G. C. Effect of liver regeneration on hepatic cytochrome P450 isozymes and serum sex steroids in the male rat. Gastroenterology. 1989 Mar;96(3):864–872. [PubMed] [Google Scholar]
- Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta. 1980 Mar 12;605(1):33–91. doi: 10.1016/0304-419x(80)90021-9. [DOI] [PubMed] [Google Scholar]
- Marie I. J., Dalet C., Blanchard J. M., Astre C., Szawlowski A., Saint Aubert B., Joyeux H., Maurel P. Inhibition of cytochrome P-450p (P450IIIA1) gene expression during liver regeneration from two-thirds hepatectomy in the rat. Biochem Pharmacol. 1988 Sep 15;37(18):3515–3521. doi: 10.1016/0006-2952(88)90705-8. [DOI] [PubMed] [Google Scholar]
- Menon G. K., Grayson S., Elias P. M. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985 Jun;84(6):508–512. doi: 10.1111/1523-1747.ep12273485. [DOI] [PubMed] [Google Scholar]
- Miller D. R., Viaje A., Aldaz C. M., Conti C. J., Slaga T. J. Terminal differentiation-resistant epidermal cells in mice undergoing two-stage carcinogenesis. Cancer Res. 1987 Apr 1;47(7):1935–1940. [PubMed] [Google Scholar]
- Molloy C. J., Laskin J. D. Keratin polypeptide expression in mouse epidermis and cultured epidermal cells. Differentiation. 1988;37(2):86–97. doi: 10.1111/j.1432-0436.1988.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Neims A. H., Warner M., Loughnan P. M., Aranda J. V. Developmental aspects of the hepatic cytochrome P450 monooxygenase system. Annu Rev Pharmacol Toxicol. 1976;16:427–445. doi: 10.1146/annurev.pa.16.040176.002235. [DOI] [PubMed] [Google Scholar]
- Pohl R. J., Coomes M. W., Sparks R. W., Fouts J. R. 7-ethoxycoumarin O-deethylation activity in viable basal and differentiated keratinocytes isolated from the skin of the hairless mouse. Drug Metab Dispos. 1984 Jan-Feb;12(1):25–34. [PubMed] [Google Scholar]
- Pohl R. J., Fouts J. R. A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal Biochem. 1980 Sep 1;107(1):150–155. doi: 10.1016/0003-2697(80)90505-9. [DOI] [PubMed] [Google Scholar]
- Potten C. S. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol. 1981;69:271–318. doi: 10.1016/s0074-7696(08)62326-8. [DOI] [PubMed] [Google Scholar]
- Reiners J. J., Jr, Hale M. A., Cantu A. R. Distribution of catalase and its modulation by 12-O-tetradecanoylphorbol-13-acetate in murine dermis and subpopulations of keratinocytes differing in their stages of differentiation. Carcinogenesis. 1988 Jul;9(7):1259–1263. doi: 10.1093/carcin/9.7.1259. [DOI] [PubMed] [Google Scholar]
- Reiners J. J., Jr, Rupp T. Conversion of xanthine dehydrogenase to xanthine oxidase occurs during keratinocyte differentiation: modulation by 12-O-tetradecanoylphorbol-13-acetate. J Invest Dermatol. 1989 Jul;93(1):132–135. doi: 10.1111/1523-1747.ep12277382. [DOI] [PubMed] [Google Scholar]
- Reiners J. J., Jr, Slaga T. J. Effects of tumor promoters on the rate and commitment to terminal differentiation of subpopulations of murine keratinocytes. Cell. 1983 Jan;32(1):247–255. doi: 10.1016/0092-8674(83)90515-9. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
- Roop D. R., Cheng C. K., Titterington L., Meyers C. A., Stanley J. R., Steinert P. M., Yuspa S. H. Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies. J Biol Chem. 1984 Jul 10;259(13):8037–8040. [PubMed] [Google Scholar]
- Roop D. R., Krieg T. M., Mehrel T., Cheng C. K., Yuspa S. H. Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res. 1988 Jun 1;48(11):3245–3252. [PubMed] [Google Scholar]
- Régnier M., Vaigot P., Darmon M., Pruniéras M. Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J Invest Dermatol. 1986 Oct;87(4):472–476. doi: 10.1111/1523-1747.ep12455517. [DOI] [PubMed] [Google Scholar]
- Stout D. L., Becker F. F. Xenobiotic metabolizing enzymes in genetically and chemically initiated mouse liver tumors. Cancer Res. 1986 Jun;46(6):2693–2696. [PubMed] [Google Scholar]
- Verma A. K., Conrad E. A., Boutwell R. K. Differential effects of retinoic acid and 7,8-benzoflavone on the induction of mouse skin tumors by the complete carcinogenesis process and by the initiation-promotion regimen. Cancer Res. 1982 Sep;42(9):3519–3525. [PubMed] [Google Scholar]
- Verma A. K., Conrad E. A., Boutwell R. K. Induction of mouse epidermal ornithine decarboxylase activity and skin tumors by 7,12-dimethylben. Carcinogenesis. 1980 Jul;1(7):607–611. doi: 10.1093/carcin/1.7.607. [DOI] [PubMed] [Google Scholar]
- Yuspa S. H., Kilkenny A. E., Steinert P. M., Roop D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989 Sep;109(3):1207–1217. doi: 10.1083/jcb.109.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]