Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 Nov;49(11):2036–2050. doi: 10.1172/JCI106423

Hemodynamic effects of phenoxybenzamine in anesthetized dogs

Noble O Fowler 1,2, John C Holmes 1,2, Thomas E Gaffney 1,2, Philip J Privitera 1,2, Gunter Grupp 1,2
PMCID: PMC535781  PMID: 4394473

Abstract

Our studies demonstrated that phenoxybenzamine, 10 mg/kg, administered intravenously to intact anesthetized dogs, produced an immediate and significant increase of heart rate and cardiac output. In heart-lung preparations, phenoxybenzamine had no effect or a negative cardiac inotropic effect, hence these actions were not related to direct cardiac action or to release of myocardial norepinephrine stores. Serial estimations of arterial blood catecholamines after phenoxybenzamine showed an increase of epinephrine and norepinephrine; the peak values of these catecholamines did not correlate well with the maximum cardiac output responses. Ganglionic blockade largely eliminated the early cardiac effects of phenoxybenzamine, hence its action did not appear to be upon peripheral terminals of postganglionic sympathetic or parasympathetic nerves. Phenoxybenzamine was found to have antivagal actions which might account for some of the delayed cardiac acceleration. When beta adrenergic receptor blockade was induced by sotalol, the cardiac effects of phenoxybenzamine were largely eliminated. Baroreceptor denervation prevented the increase of cardiac output after phenoxybenzamine. These observations are consistent with the concept that the increase of cardiac rate and output produced by phenoxybenzamine is principally mediated by baroreceptor reflexes acting through sympathetic cardiac nerves or circulating catecholamines.

Full text

PDF
2036

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVIADO D. M. PHARMACOLOGIC APPROACH TO THE TREATMENT OF SHOCK. Ann Intern Med. 1965 May;62:1050–1059. doi: 10.7326/0003-4819-62-5-1050. [DOI] [PubMed] [Google Scholar]
  2. Aramendía P., Kaumann A. J. Inhibition of sympathomimetic effects on the cardiovascular system by 4-(2-isopropylamino-1-hydroxyethyl)methanesulfonanilide hydrochloride (MJ 1999). J Pharmacol Exp Ther. 1967 Feb;155(2):259–266. [PubMed] [Google Scholar]
  3. BENFEY B. G. Effect of phenoxybenzamine on vagal inhibition of the heart. Can J Biochem Physiol. 1962 Oct;40:1457–1459. [PubMed] [Google Scholar]
  4. BENFEY B. G., LEDOUX G., MELVILLE K. I. Increased urinary excretion of adrenaline and noradrenaline after phenoxybenzamine. Br J Pharmacol Chemother. 1959 Mar;14(1):142–148. doi: 10.1111/j.1476-5381.1959.tb00941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BENFEY B. G., LEDOUX G., SEGAL M. The action of antisympathomimetic drugs on the urinary excretion of adrenaline and noradrenaline. Br J Pharmacol Chemother. 1959 Sep;14:380–384. doi: 10.1111/j.1476-5381.1959.tb00262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BERTLER A., CARLSSON A., ROSENGREN E. A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiol Scand. 1958 Dec 15;44(3-4):273–292. doi: 10.1111/j.1748-1716.1958.tb01627.x. [DOI] [PubMed] [Google Scholar]
  7. BOSS J., GREEN J. H. The histology of the common carotid baroceptor areas of the cat. Circ Res. 1956 Jan;4(1):12–17. doi: 10.1161/01.res.4.1.12. [DOI] [PubMed] [Google Scholar]
  8. Berkowitz W. D., Scherlag B. J., Stein E., Damato A. N. Relative roles of sympathetic and parasympathetic nervous systems in the carotid sinus reflex in dogs. Circ Res. 1969 Mar;24(3):447–455. doi: 10.1161/01.res.24.3.447. [DOI] [PubMed] [Google Scholar]
  9. Brown A. M. Cardiac sympathetic adrenergic pathways in which synaptic transmission is blocked by atropine sulfate. J Physiol. 1967 Jul;191(2):271–288. doi: 10.1113/jphysiol.1967.sp008250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. COTTEN M. D., MORAN N. C., STOPP P. E. A comparison of the effectiveness of adrenergic blocking drugs in inhibiting the cardiac actions of sympathomimetic amines. J Pharmacol Exp Ther. 1957 Oct;121(2):183–190. [PubMed] [Google Scholar]
  11. CROUT J. R., CREVELING C. R., UDENFRIEND S. Norepinephrine metabolism in rat brain and heart. J Pharmacol Exp Ther. 1961 Jun;132:269–277. [PubMed] [Google Scholar]
  12. Chang P. Sympathomimetic actions of phenoxybenzamine on rat heart. Eur J Pharmacol. 1968 Oct;4(3):240–245. doi: 10.1016/0014-2999(68)90090-3. [DOI] [PubMed] [Google Scholar]
  13. Fowler N. O., Holmes J. C. Hemodynamic effects of isoproterenol and norepinephrine in acute cardiac tamponade. J Clin Invest. 1969 Mar;48(3):502–507. doi: 10.1172/JCI106007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KAISER G. A., ROSS J., Jr, BRAUNWALD E. ALPHA AND BETA ADRENERGIC RECEPTOR MECHANISMS IN THE SYSTEMIC VENOUS BED. J Pharmacol Exp Ther. 1964 May;144:156–162. [PubMed] [Google Scholar]
  15. KIRPEKAR S. M., CERVONI P. EFFECT OF COCAINE, PHENOXYBENZAMINE AND PHENTOLAMINE ON THE CATECHOLAMINE OUTPUT FROM SPLEEN AND ADRENAL MEDULLA. J Pharmacol Exp Ther. 1963 Oct;142:59–70. [PubMed] [Google Scholar]
  16. Lang K. F., James T. N. Vagal blocking action of phentolamine and dibenzyline studies by direct perfusion of the sinus node. Proc Soc Exp Biol Med. 1969 Jan;130(1):121–126. doi: 10.3181/00379727-130-33502. [DOI] [PubMed] [Google Scholar]
  17. Levy J. V., Richards V. Inotropic and chronotropic effects of a series of beta-adrenergic blocking drugs: some structure-activity relationships. Proc Soc Exp Biol Med. 1966 Jun;122(2):373–379. doi: 10.3181/00379727-122-31138. [DOI] [PubMed] [Google Scholar]
  18. MILLAR R. A., KEENER E. B., BENFEY B. G. Plasma adrenaline and noradrenaline after phenoxybenzamine administration, and during haemorrhagic hypotension, in normal and adrenalectomized dogs. Br J Pharmacol Chemother. 1959 Mar;14(1):9–13. doi: 10.1111/j.1476-5381.1959.tb00921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MORAN N. C., PERKINS M. E. An evaluation of adrenergic blockade of the mammalian heart. J Pharmacol Exp Ther. 1961 Aug;133:192–201. [PubMed] [Google Scholar]
  20. MURPHY G. P., GAGNON J. A., EWALD R. A. RENAL AND SYSTEMIC HEMODYNAMIC EFFECTS OF DIBENZYLINE IN NORMOTENSION AND HEMORRHAGIC HYPOTENSION. Surgery. 1965 Jun;57:856–867. [PubMed] [Google Scholar]
  21. SCHAPIRO S. Effect of a catechol amine blocking agent (dibenzyline) on organ content and urine excretion of noradrenaline and adrenaline. Acta Physiol Scand. 1958 Jun 2;42(3-4):371–375. doi: 10.1111/j.1748-1716.1958.tb01571.x. [DOI] [PubMed] [Google Scholar]
  22. Trendelenburg U. Transmission of preganglionic impulses through the muscarinic receptors of the superior cervical ganglion of the cat. J Pharmacol Exp Ther. 1966 Dec;154(3):426–440. [PubMed] [Google Scholar]
  23. WILLEY G. L. Effect of antisympathomimetic drugs on the plasma concentrations of catechol amines. Br J Pharmacol Chemother. 1962 Dec;19:365–374. doi: 10.1111/j.1476-5381.1962.tb01441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES