Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Mar;87(5):2013–2017. doi: 10.1073/pnas.87.5.2013

Two-locus autosomal sex determination: on the evolutionary genetic stability of the even sex ratio.

U Liberman 1, M W Feldman 1, I Eshel 1, S P Otto 1
PMCID: PMC53615  PMID: 2308959

Abstract

In two-locus models of sex determination, there are two kinds of interior (polymorphic) equilibria. One class has the even sex ratio, and the other has equal allele frequencies in the two sexes. Equilibria of the second class may exhibit linkage disequilibrium. The condition for external stability of these second-class equilibria to invasion by a new allele is that the appropriately averaged sex ratio near the equilibrium be moved closer to the even sex ratio than the average among the resident genotypes. However, invasion by a new chromosome depends on the recombination fraction in a way that appears to preclude general results about the evolutionary genetic stability of the even sex ratio in this situation.

Full text

PDF
2013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eshel I. Are intragametic conflicts common in nature? Do they represent an important factor in evolution? J Theor Biol. 1984 May 7;108(1):159–162. doi: 10.1016/s0022-5193(84)80176-9. [DOI] [PubMed] [Google Scholar]
  2. Eshel I. On the evolution of an inner conflict. J Theor Biol. 1984 May 7;108(1):65–76. doi: 10.1016/s0022-5193(84)80169-1. [DOI] [PubMed] [Google Scholar]
  3. Eshel I. Selection of sex-ratio and the evolution of sex-determination. Heredity (Edinb) 1975 Jun;34(3):351–361. doi: 10.1038/hdy.1975.44. [DOI] [PubMed] [Google Scholar]
  4. Hamilton W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science. 1967 Apr 28;156(3774):477–488. doi: 10.1126/science.156.3774.477. [DOI] [PubMed] [Google Scholar]
  5. Karlin S., Lessard S. On the optimal sex ratio. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5931–5935. doi: 10.1073/pnas.80.19.5931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karlin S., Lessard S. On the optimal sex-ratio: a stability analysis based on a characterization for one-locus multiallele viability models. J Math Biol. 1984;20(1):15–38. doi: 10.1007/BF00275859. [DOI] [PubMed] [Google Scholar]
  7. Karlin S., Liberman U. Central Equilibria in Multilocus Systems. II. Bisexual Generalized Nonepistatic Selection Models. Genetics. 1979 Apr;91(4):799–816. doi: 10.1093/genetics/91.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karlin S., Liberman U. Central equilibria in multilocus systems. I. Generalized nonepistatic selection regimes. Genetics. 1979 Apr;91(4):777–798. doi: 10.1093/genetics/91.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liberman U. External stability and ESS: criteria for initial increase of new mutant allele. J Math Biol. 1988;26(4):477–485. doi: 10.1007/BF00276375. [DOI] [PubMed] [Google Scholar]
  10. Nur U. The expected changes in the frequency of alleles affecting the sex ratio. Theor Popul Biol. 1974 Apr;5(2):143–147. doi: 10.1016/0040-5809(74)90036-7. [DOI] [PubMed] [Google Scholar]
  11. Uyenoyama M. K., Bengtsson B. O. Towards a genetic theory for the evolution of the sex ratio. III. Parental and sibling control of brood investment ratio under partial sib-mating. Theor Popul Biol. 1982 Aug;22(1):43–68. doi: 10.1016/0040-5809(82)90035-1. [DOI] [PubMed] [Google Scholar]
  12. Uyenoyama M. K., Bengtsson B. O. Towards a genetic theory for the evolution of the sex ratio. Genetics. 1979 Nov;93(3):721–736. doi: 10.1093/genetics/93.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES