Skip to main content
Journal of Genomics logoLink to Journal of Genomics
. 2017 Mar 9;5:48–50. doi: 10.7150/jgen.16163

Whole-genome Sequencing of Vibrio sinaloensis T47, a Tropical Marine Isolate with Quorum Sensing Properties

Nur Izzati Mohamad 1, Kah Yan How 1, Wai-Fong Yin 1, Kok-Gan Chan 1,
PMCID: PMC5362765  PMID: 28348643

Abstract

A large number of Vibrio sp. thrive in the marine environment and they are notable to cause food borne infection associated with undercooked seafood. In this study, we report the whole genome sequence of Vibrio sinaloensis T47 which was isolated from coastal marine water in Morib Beach, Hulu Selangor. The genome is made up of approximately 4.59 Mbp with 80 contigs and 46% G+C content. From the annotated genome, genes associated with quorum sensing (QS) were identified. This research provides a genetic basis for better understanding of QS pathway which contributes to the physiological traits of strain T47 to thrive in the marine environment.

Keywords: Vibrio sinaloensis, whole genome sequencing, quorum sensing, autoinducer synthase, virulence factor

Introduction

Vibrio sp. is a very common bacterium which can be found in almost all water-borne environments including sea, estuary and fresh water. Vibrio sp. first made its debut into the scientific world through the discovery of bioluminescence properties. It was reported that Vibrio fischeri forms a symbiotic relationship with its host, the Hawaiian bobtail squid (Euprymna scolopes) and this underlying symbiosis is associated with quorum sensing (QS) 1. QS is well known as a mechanism of virulence and colonization when the population in bacteria surpasses a threshold. This feature seems to be a common trait in the members of the genus Vibrio.

Since the development of advance taxonomical tools such as DNA-DNA hybridization, fluorescent amplified fragment length polymorphism and multilocus sequence analysis, the number of novel species from Vibrio family being discovered is constantly expanding 2, 3. Among the vast members of Vibrio genus, a number of them were demonstrated to possess QS abilities such as V. harveyi 4, V. cholera 5, and V. anguillarum 6. There is mounting data suggesting that QS is responsible for many unique traits such as pathogenicity, swarming abilities and biofilm production 7, 8, 9. In this work, we study on V. sinaloensis strain T47 which was isolated from a tropical marine in Morib Beach, Selangor (2ᵒ 45' 2.7" N, 101ᵒ 26' 34.7" E). A water sample was collected approximately 15 cm from the water surface.

V. sinaloensis was first documented by Gomez-Gil and colleagues 10 from the spotted rose snapper (Lutjanus guttatus) which causes infection and vibriosis. In fact, this bacterium is a major threat to the aquaculture sector due to its pathogenicity properties. The colonization of V. sinaloensis has been reported in crustaceans, for example, the white-leg shrimp, Litopenaeus vannamei 11. Here, the sequencing strategy and data of the whole genome of strain T47 is presented to provide better understanding of the marine bacterium as well as insights to the physiological behaviors associated to QS activity.

V. sinaloensis strainT47 was cultured in aseptic condition on Luria Bertani Agar (LBA) with 3% NaCl concentration (w/v) and incubated at 28°C overnight. The genomic DNA of strain T47 was extracted using QIAamp DNA Minikit (Qiagen, Germany) according to the manufacturer's instructions. The quality of the extracted DNA was measured using NanoDrop Spectrophotometer (Thermo Scientific) and Qubit 2.0 fluorometer (Life Technologies). Next, Nextera DNA Prep Kit (Illumina Inc., CA) was used to prepare the sequencing library followed by whole genome sequencing using a personal sequencer, Illumina MiSeq (Illumina Inc., CA). The total reads were assembled into 80 contigs with 43.8 × coverage using CLC Genomic Workbench version 5.1 (CLC Bio, Denmark). The draft genome of strain T47 is made up of 4,599,504 bp with G+C content of 46.12%. The genome sequence has been deposited into GenBank under the accession number JXBJ00000000. The 16S rDNA sequence used in identification of strain T47 12 was also deposited into NCBI under accession number KR058860.

Based on 16S rDNA sequence, strain T47 was found to have more than 99% similarity to several Vibrio sp. such as V. variabilis, V. caribbeanicus, and V. sinaloensis. On the other hand, annotations of both functional and predicted genes were performed using the Integrated Microbial Genomes (IMG-ER) platform and with GOLD-ID Ga0063884 13. As shown in Table 1, the genome was resolved into 4,105 protein coding genes (CDs) and a total of 127 RNA genes which consist of 8 genes responsible for 5S rRNA synthesis, 5 genes for 16S rRNA synthesis, 6 genes for 23S rRNA synthesis and 107 genes for tRNA. From the IMG-ER platform, cluster of orthologous groups (COG) categories showed that a large number of genes are responsible for basic life-sustaining needs of the bacterium. It was found that 310 genes were predicted to contribute to amino acid transport and metabolism, 245 genes are linked to carbohydrate transport and metabolism, 295 involves in signal transduction mechanisms, and 91 genes are related to the virulence and defense regulation (Table 2).

Table 1.

Genome features of V. sinaloensis strain T47

Attributes Number % of Total
DNA, total number of bases 4, 599, 504 100.00
DNA coding number of bases 4, 053, 747 88.13
DNA G + C number of bases 2, 121, 494 46.12 1
DNA scaffolds 80 100.00
Genes total number 4232 100.00
Protein coding genes 4105 97.00
RNA genes 127 3.00
rRNA genes 19 0.45
5S rRNA 8 0.19
16S rRNA 5 0.12
23S rRNA 6 0.14
tRNA genes 106 2.50
Other RNA genes 2 0.05
Protein coding genes with function prediction 3428 81.00
Pseudo genes 65 1.54
Without function prediction 677 16.00
Protein coding genes with enzymes 1124 26.56
Without enzymes but with candidate KO based enzymes 5 0.12
Protein coding genes connected to Transporter Classification 614 14.51
Protein coding genes connected to KEGG pathways 1310 30.95
Not connected to KEGG pathways 2795 66.04
Protein coding genes connected to KEGG Orthology (KO) 2448 57.84
Not connected to KEGG Orthology (KO) 1657 39.15
Protein coding genes connected to MetaCyc pathways 954 22.54
Not connected to MetaCyc pathways 3151 74.46
Protein coding genes with COGs 3085 72.90
Chromosomal Cassettes 392 -
Biosynthetic Clusters 8 -
Genes in Biosynthetic Clusters 125 2.95
Fused Protein coding genes 136 3.21
Protein coding genes coding signal peptides 445 10.52
Protein coding genes coding transmembrane proteins 1034 24.43

Table 2.

Cluster of orthologous groups for strain T47 IMG-ER platform

Name Count Percentage (%)
Amino acid transport and metabolism 310 8.8
Carbohydrate transport and metabolism 245 6.95
Cell cycle control, cell division, chromosome partitioning 39 1.11
Cell motility 135 3.83
Cell wall/ membrane/ envelope biogenesis 220 6.24
Chromatin structure and dynamics 1 0.03
Coenzyme transport and metabolism 173 4.91
Defense mechanisms 91 2.58
Energy production and conversion 198 5.58
Extracellular structures 49 1.39
Function unknown 207 5.87
General function prediction only 238 6.75
Inorganic ion transport and metabolism 177 5.02
Intracellular trafficking, secretion and vesicular transport 77 2.19
Lipid transport and metabolism 122 3.48
Mobilome: prophages and transposons 12 0.34
Nucleotide transport and metabolism 93 2.64
Posttranslational modification, protein turnover, chaperones 162 4.6
RNA processing and modification 1 0.03
Replication, recombination and repair 120 3.41
Secondary metabolites biosynthesis, transport and catabolism 64 1.82
Signal transduction mechanisms 295 8.37
Transcription 257 7.29
Translation, ribosomal structure and biogenesis 240 6.81
Not in COG 1147 27.1

From the annotated genome sequences, a gene associated with QS was found in contig 14. The 1203 bp of luxM homologue is analogous to an N-acyl homoserine lactone (AHL) synthase, AinS, which can be also found in V. fischeri 14, 15. Hence, it is highly postulated that the autoinducer synthase LuxM is responsible for the production of signaling molecules in strain T47. In this study, the availability of the sequence could contribute to a better understanding of QS system and its role in V. sinaloensis.

Nucleotide sequence accession numbers

The draft genome sequence of V. sinaloensis strain T47 can be obtained from GenBank under the accession number JXBJ00000000. This version described in the paper is the first version, JXBJ00000000. The GenBank accession number for 16S rDNA nucleotide sequence for strain T47 is KR058860. This version described in the paper is the first version, KR058860.

Acknowledgments

This work was supported by the High Impact Research Grants, University of Malaya (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, No. H-50001-A000027; UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/01, No. A000001-50001) awarded to Kok-Gan Chan which are gratefully acknowledged.

References

  • 1.Lupp C, Urbanowski M, Greenberg EP, Ruby EG. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol Biol. 2001;50(1):319–331. doi: 10.1046/j.1365-2958.2003.t01-1-03585.x. [DOI] [PubMed] [Google Scholar]
  • 2.Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol. 2001;24:520–538. doi: 10.1078/0723-2020-00067. [DOI] [PubMed] [Google Scholar]
  • 3.Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, rezA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol. 2010;60:154–165. doi: 10.1099/ijs.0.010702-0. [DOI] [PubMed] [Google Scholar]
  • 4.Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol. 2004;186(20):6902–6914. doi: 10.1128/JB.186.20.6902-6914.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cámara M, Hardman A, Williams P, Milton D. Quorum sensing in Vibrio cholerae. Nat Gen. 2002;32:217–218. doi: 10.1038/ng1002-217. [DOI] [PubMed] [Google Scholar]
  • 6.Milton DL, Hardman A, Cámara M, Chhabra SR, Bycroft BW, Stewart GS, Williams P. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J Bacteriol. 1997;179(9):3004–3012. doi: 10.1128/jb.179.9.3004-3012.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 2006;20:2754–2767. doi: 10.1101/gad.1466506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Henares BM, Xu Y, Boon EM. A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm production. Int J Mol Sci. 2013;14(8):16473–16484. doi: 10.3390/ijms140816473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol. 2001;183(12):3237–3247. doi: 10.1128/JB.183.12.3537-3547.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gomez-Gil B, Fajer-Avila E, Pascual J, Macian MC, Pujalte MJ, Garay E, Roque A. Vibrio sinaloensis sp. nov. isolated from the spotted rose snapper, Lutjanus guttatus Steindachener, 1869. Int J Syst Evol Microbiol. 2008;58:1621–1624. doi: 10.1099/ijs.0.65719-0. [DOI] [PubMed] [Google Scholar]
  • 11.del Carmen Flores-Miranda M, Luna-González A, Córdova AI, Fierro-Coronado JA, Partida-Arangure BO, Pintado J, González-Ocampo HA. Isolation and characterization of infectious Vibrio sinaloensis strains from the Pacific shrimp Litopenaeus vannamei (Decapoda: Penaeidae) Rev Biol Trop. 2012;60(2):567–576. [PubMed] [Google Scholar]
  • 12.Tan PW, Tan WS, Muhamad Yunos NY, Mohamad NI, Adrian TGS, Yin WF, Chan KG. Short chain N-acyl homoserine lactone production in tropical marine Vibrio sinaloensis strain T47. Sensors (Basel) 2014;14(7):12958–12967. doi: 10.3390/s140712958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;2:2271–2278. doi: 10.1093/bioinformatics/btp393. [DOI] [PubMed] [Google Scholar]
  • 14.Gilson L, Kuo A, Dunlap PV. AinS and a new family of autoinducer synthesis proteins. J Bacteriol. 1995;77:6946–6951. doi: 10.1128/jb.177.23.6946-6951.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lupp C, Ruby EG. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J Bacteriol. 2004;186(12):3873–3881. doi: 10.1128/JB.186.12.3873-3881.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Genomics are provided here courtesy of Ivyspring International Publisher

RESOURCES