Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Mar;87(6):2117–2121. doi: 10.1073/pnas.87.6.2117

K(+)-evoked Müller cell depolarization generates b-wave of electroretinogram in toad retina.

R Wen 1, B Oakley 2nd 1
PMCID: PMC53637  PMID: 2107544

Abstract

We tested the hypothesis that a light-evoked increase in [K+]o produces a depolarization of the Müller cell membrane, which in turn generates the electroretinogram b-wave current. Using Bufo marinus isolated retinas and K(+)-selective microelectrodes, we recorded two distinct light-evoked increases in extracellular K+ concentration: one in the inner plexiform layer and the other near the outer plexiform layer; the "distal" K+ increase was found over only 10-microns depth and had a maximum amplitude of 0.3 mM. We also recorded the electroretinogram and the light-evoked responses of rods and Müller cells. After correction for the response time of the K(+)-selective microelectrode, the waveforms of all three of these responses were almost exactly as predicted by an earlier computer simulation of the K+/Müller cell hypothesis of the b-wave by Newman and Odette [Newman, E.A. & Odette, L.L. (1984) J. Neurophysiol. 51, 164-182]. The distal K+ increase and the b-wave varied in a similar manner as a function of stimulus irradiance. Superfusion with 0.2 mM Ba2+ attenuated both the Müller cell depolarization and the b-wave by approximately 65% but had no significant effect upon the distal K+ increase. Because Ba2+ reduces K+ conductance of Müller cells, these results are very strong support of the K+/Müller cell hypothesis of the origin of the electroretinogram b-wave; the light-evoked increase in extracellular potassium concentration still is present during superfusion with Ba2+, but the K(+)-evoked Müller cell depolarization and the b-wave are decreased in amplitude because Müller cell K+ conductance is reduced.

Full text

PDF
2117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brew H., Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. 1987 Jun 25-Jul 1Nature. 327(6124):707–709. doi: 10.1038/327707a0. [DOI] [PubMed] [Google Scholar]
  2. Brew H., Gray P. T., Mobbs P., Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986 Dec 4;324(6096):466–468. doi: 10.1038/324466a0. [DOI] [PubMed] [Google Scholar]
  3. Brown K. T., Flaming D. G. Opposing effects of calcium and barium in vertebrate rod photoreceptors. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1587–1590. doi: 10.1073/pnas.75.3.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman P. A., Carras P. L., Miller R. F. Barium reverses the transretinal potassium gradient of the amphibian retina. Neurosci Lett. 1987 Sep 11;80(1):61–65. doi: 10.1016/0304-3940(87)90495-2. [DOI] [PubMed] [Google Scholar]
  5. Dick E., Miller R. F. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas. J Gen Physiol. 1985 Jun;85(6):885–909. doi: 10.1085/jgp.85.6.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dick E., Miller R. F. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 1978 Oct 13;154(2):388–394. doi: 10.1016/0006-8993(78)90711-4. [DOI] [PubMed] [Google Scholar]
  7. Fain G. L., Gerschenfeld H. M., Quandt F. N. Calcium spikes in toad rods. J Physiol. 1980 Jun;303:495–513. doi: 10.1113/jphysiol.1980.sp013300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fox J. A. An improved method for illuminating pipet tips for fire-polishing. J Neurosci Methods. 1985 Nov-Dec;15(3):239–241. doi: 10.1016/0165-0270(85)90104-9. [DOI] [PubMed] [Google Scholar]
  9. Frishman L. J., Steinberg R. H. Intraretinal analysis of the threshold dark-adapted ERG of cat retina. J Neurophysiol. 1989 Jun;61(6):1221–1232. doi: 10.1152/jn.1989.61.6.1221. [DOI] [PubMed] [Google Scholar]
  10. Griff E. R., Shirao Y., Steinberg R. H. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium. J Gen Physiol. 1985 Dec;86(6):853–876. doi: 10.1085/jgp.86.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hu K. G., Marmor M. F. Selective actions of barium on the c-wave and slow negative potential of the rabbit eye. Vision Res. 1984;24(10):1153–1156. doi: 10.1016/0042-6989(84)90169-x. [DOI] [PubMed] [Google Scholar]
  12. Karwoski C. J., Lu H. K., Newman E. A. Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science. 1989 May 5;244(4904):578–580. doi: 10.1126/science.2785716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karwoski C. J., Newman E. A., Shimazaki H., Proenza L. M. Light-evoked increases in extracellular K+ in the plexiform layers of amphibian retinas. J Gen Physiol. 1985 Aug;86(2):189–213. doi: 10.1085/jgp.86.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kline R. P., Ripps H., Dowling J. E. Generation of b-wave currents in the skate retina. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5727–5731. doi: 10.1073/pnas.75.11.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kline R. P., Ripps H., Dowling J. E. Light-induced potassium fluxes in the skate retina. Neuroscience. 1985 Jan;14(1):225–235. doi: 10.1016/0306-4522(85)90175-7. [DOI] [PubMed] [Google Scholar]
  16. Malchow R. P., Qian H. H., Ripps H. gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4326–4330. doi: 10.1073/pnas.86.11.4326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
  18. Newman E. A. Current source-density analysis of the b-wave of frog retina. J Neurophysiol. 1980 May;43(5):1355–1366. doi: 10.1152/jn.1980.43.5.1355. [DOI] [PubMed] [Google Scholar]
  19. Newman E. A. Membrane physiology of retinal glial (Müller) cells. J Neurosci. 1985 Aug;5(8):2225–2239. doi: 10.1523/JNEUROSCI.05-08-02225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newman E. A., Odette L. L. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol. 1984 Jan;51(1):164–182. doi: 10.1152/jn.1984.51.1.164. [DOI] [PubMed] [Google Scholar]
  21. Oakley B., 2nd Effects of maintained illumination upon [K+]0 in the subretinal space of the isolated retina of the toad. Vision Res. 1983;23(11):1325–1337. doi: 10.1016/0042-6989(83)90108-6. [DOI] [PubMed] [Google Scholar]
  22. Oakley B., 2nd, Wen R. Extracellular pH in the isolated retina of the toad in darkness and during illumination. J Physiol. 1989 Dec;419:353–378. doi: 10.1113/jphysiol.1989.sp017876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Odette L. L., Newman E. A. Model of potassium dynamics in the central nervous system. Glia. 1988;1(3):198–210. doi: 10.1002/glia.440010305. [DOI] [PubMed] [Google Scholar]
  24. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  25. Stockton R. A., Slaughter M. M. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989 Jan;93(1):101–122. doi: 10.1085/jgp.93.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Witkovsky P., Stone S., Ripps H. Pharmacological modification of the light-induced responses of Müller (glial) cells in the amphibian retina. Brain Res. 1985 Feb 25;328(1):111–120. doi: 10.1016/0006-8993(85)91329-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES