Skip to main content
Genes logoLink to Genes
. 2017 Mar 3;8(3):95. doi: 10.3390/genes8030095

Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance

Duncan Ayers 1,2,*, Jo Vandesompele 3,4
Editors: Roel Ophoff, George A Calin
PMCID: PMC5368699  PMID: 28273813

Abstract

Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.

Keywords: miRNA, lncRNA, cancer, chemoresistance, drug resistance, tumour, microRNA

1. Introduction

The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have certainly expanded the level of intricacy present for the development of any single physiological phenotype [1]. Such phenotypes can include clinical conditions of either an acute or a chronic nature. Undoubtedly, cancer best symbolizes clinical conditions relying on multifactorial influences for its development. Furthermore, the clinical presentation of any specific cancer condition in the patient can vary to great extents, depending on multiple tumour characteristics such as the degree of invasiveness, aggressiveness and angiogenesis. However, one of the most crucial cancer phenotypes that pose a major challenge to current conventional chemotherapeutic measures is the ability of the tumour to withstand the pharmacological effects of multiple cancer chemotherapy drugs, typically described as chemoresistance.

Since the influences of ncRNAs in the main facets of cancer development are described in great detail within the scientific literature, this review specifically places a spotlight on the emerging global research efforts that (in the authors’ opinion) most effectively recognize the growing link pertaining to non-coding RNA activities with the regulation of cancer chemoresistance properties [2,3,4,5,6].

2. Cancer Chemoresistance Manifestations and Development Mechanisms

Tumours bearing a chemoresistance phenotype can irrevocably thwart the prognosis of the cancer patient, particularly when such characteristics evolve in relapse of the disease. This chemoresistance phenotype has two distinct development mechanisms, leading to the existence of innate and acquired chemoresistance phenotypes [7].

Innate chemoresistance refers to the scenario that an individual tumour can inherently possess unique genetic characteristics that render the tumour to withstand single (or multiple) chemotherapeutic agents, through various influences on drug cytotoxicity circumvention pathways, as described below [7].

In the case of acquired chemoresistance properties, the link between such cancer relapse phases and multi-drug resistant (MDR) tumours is predominantly due to the regular exposure of the tumour to conventional chemotherapeutic cyclical administration [7]. This essentially drives the tumour to evolve at the genetic level to a variant having increased withstanding potential against such conventional chemotherapeutic agents [7].

Since this article focuses specifically on the links identified so far between miRNAs/lncRNAs and cancer chemoresistance properties, it is important to highlight the main recognized mechanisms by which tumours can develop multi-drug resistance against conventional chemotherapeutic agents.

By far the most important and characterised mechanism for the emergence of cancer chemoresistance properties is the employment of drug efflux pumps that actively remove multiple drugs from the tumour cell cytoplasm, including conventional chemotherapeutic agents and eventually leading to MDR [8,9,10,11,12]. The key molecular players involved in drug efflux processes are primarily the ATP-dependent binding cassette (ABC) transporters such as ABCG2, ABCB1 (multidrug resistance 1 gene/P-glycoprotein) and ABCC1 (multidrug resistance-associated protein 1) [8,9,10,11,12]. Another important mechanistic branch leading to chemoresistance is the dysfunction or loss of p53-mediated apoptotic pathways typically triggered by DNA damage, with examples being dysfunctional activity of the mouse double minute 2 gene (Mdm2) and the p53 encoding gene (TP53) [13,14,15]. In a similar manner, other pro-apoptotic pathways that are typically triggered by cytotoxic drug activities can be hindered within chemoresistant tumour cells. Such pathway issues include cellular FADD-like interleukin 1 beta converting enzyme-inhibitory protein (c-FLIP) and the Bcl-2 protein family members [16,17,18,19]. Alternatively, triggering of proliferative/survival signalling pathways such as the ERK and PI3K pathways by means of protein tyrosine kinases, sirtulins, transcription factor kappa B (NFκB) or epidermal growth factor receptor (EGFR) family members can also lead to chemoresistance phenotypes within tumours [20,21,22]. Furthermore, increased efforts by key molecular components of the nucleotide excision repair pathway can take place as a means of limiting tumour cell DNA damage by cytotoxic drug activity [23,24,25]. Other mechanisms directing chemoresistance phenotypes in tumours include drug modulation through inactivation or attenuation of cytotoxic drug activity, modification of drug targets and inhibition of tumour suppressor genes that trigger DNA methylation pathways [26,27,28].

In essence, a particular tumour can be clinically recognized as MDR through the identification of a unique spectrum of dysregulated expression patterns of multiple mRNA biomarkers [29,30,31,32,33]. However, the discovery of the miRNA and long non-coding RNA (lncRNA) families have created additional layers of genomic regulatory functions [2,34,35,36,37,38,39]. Further insight into the roles conducted by miRNAs and lncRNAs in the development of innate and/or acquired chemoresistance properties by tumours is expected to lead to a more accurate depiction of the cancer patient’s condition—both at diagnosis and during possible relapse condition.

The sections below represent a comprehensive summary of the global research efforts in delineating the influences and main mechanistic links of such non-coding RNA families on this specific tumour characteristic. Ultimately, the goal of developing novel theranostic measures for employment in the oncology clinic setting can be attained.

3. Influences of miRNAs in Cancer Chemoresistance

Each physiologically active, individual miRNA consists of a 19–22 nucleotide RNA duplex, bearing a guide strand that is fully or partially complementary to the target transcript to which it binds [40]. This binding, which is typically non-totally complementary, leads to either mRNA target cleavage or a hindering effect on the translational phase of protein synthesis by the ribosomal infrastructure. This has the ultimate effect of a reduction in protein level production for the affected target transcript, or effectively post-transcriptional gene regulation [40].

Since the discovery of the initial concept of miRNA-driven gene regulation in living organisms at the turn of the millennium, close to 2600 miRNAs have been identified and catalogued in human [41]. This large family of gene regulating molecular players leads to a myriad of possibilities to the degree of beneficial and detrimental physiological interactions within the cellular microenvironment, including cancer chemoresistance properties.

Table 1 and Supplementary Materials Table S1 comprise an exhaustive compendium of studies directly focusing on the influence, through dysregulated expression, of specific miRNAs on cancer chemoresistance in the past three years alone:

Table 1.

Compendium of miRNAs identified to influence cancer chemoresistance since 2013, either as oncomiRs or as tumour suppressors. A details list of additional such miRNAs, identified prior to 2013, can be obtained through the open-access review publication by Garofalo and Croce [42]. Furthermore, due to recent changes in miRNA annotation and nomenclature, the putative miRNAs mentioned in the literature have been listed according to the latest annotation changes on the miRBase repository, using the miRBase tracker webtool (annotation history of mature miRNA searches) [43]. Table keys: u, Upregulated; d, Downregulated; nd, not described; +, Increase; −, Reduction.

miRNA/s Involved (Species—Homo sapiens) Accession (MIMAT) Number Cancer Model Affected Chemotherapeutic Drugs Dysregulation Status Effect on Chemo-Resistance Phenotype Ref.
miR-34a-5p 0000255 bladder neoadjuvant chemotherapy nd + [44]
miR-100-5p 0000098
miR-146b-5p 0002809
miR-9-5p 0000441
miR-193a-3p 0000459
let-7c-5p 0000064 bladder Platinum-based neoadjuvant chemotherapy d + [45]
miR-1290 0005880 bladder gemcitabine u + [46]
miR-138-5p 0000430 u +
let-7i-5p 0000415 d +
let-7b-5p 0000063 d +
miR-193a-3p 0000459 bladder MDR u + [47,48,49]
miR-21-5p 0000076 breast gemcitabine u + [50]
miR-25-3p 0000081 breast d [51]
miR-125b-5p 0000423 breast u + [52]
miR-149-5p 0000450 breast d + [53]
miR-320a 0000510 breast d + [54]
miR-29a-3p 0000086 breast doxorubicin u + [55]
miR-129-2-3p 0004605 breast docetaxel u + [56]
miR-139-5p 0000250 breast docetaxel d + [57]
miR-760 0004957 breast doxorubicin u + [58]
miR-484 0002174 breast u + [59]
miR-223-3p 0000280 breast d + [60]
miR-489-3p 0002805 breast u - [61]
miR-34a-5p 0000255 breast doxorubicin
docetaxel
u [62]
miR-222-3p 0000279 d
miR-452-5p 0001635 d
miR-29a-3p 0000086 d
let-7a-5p 0000062 breast epirubicin d + [63]
miR-181b-5p 0000257 breast doxorubicin u + [64]
miR-141-3p 0000432 breast docetaxel u + [65]
miR-145-5p 0000437 breast doxorubicin u [66]
miR-100-5p 0000098 breast doxorubicin
docetaxel
u + [67]
miR-222-3p 0000279 u +
miR-30a-3p 0000088 u +
miR-30a-5p 0000087 u +
miR-30c-5p 0000244 breast u [68]
miR-155-5p 0000646 breast tamoxifen u + [69]
miR-663a 0003326 breast doxorubicin u + [70]
miR-302a-3p 0000684 breast doxorubicin u [71]
miR-302b-3p 0000715 u
miR-302c-3p 0000717 u
miR-302d-3p 0000718 u
miR-200c-3p 0000617 breast doxorubicin u [72]
miR-181a-5p 0000256 cervical cisplatin u + [73]
miR-125a-5p 0000443 cervical paclitaxel u [74]
miR-100-5p 0000098 chondrosarcoma cisplatin u [75]
miR-4299 0016851 colon capecitabine
oxaliplatin
d [76]
miR-196b-5p 0001080 u
miR-34a-5p 0000255 colon 5-fluorouracil u [77]
miR-122-5p 0000421 colon 5-fluorouracil u [78]
miR-409-3p 0001639 colon oxaliplatin u [79]
miR-223-3p 0000280 colon d + [60]
miR-494-3p 0002816 colon 5-fluorouracil u [80]
miR-125a-5p 0000443 colon paclitaxel u [81]
miR-125b-5p 0000423
miR-218-5p 0000275 colorectal 5-fluorouracil u [82]
miR-203a-3p 0000264 colorectal paclitaxel
5-fluorouracil
u [83,84]
miR-1914-3p 0007890 colorectal capecitabine
oxaliplatin
u [85]
miR-1915-3p 0007892 u
miR-204-5p 0000265 colorectal 5-fluorouracil u [86]
miR-139-5p 0000250 colorectal 5-fluorouracil u [87]
miR-205-5p 0000266 colorectal u + [88]
miR-373-3p 0000726 u +
miR-425-5p 0003393 colorectal 5-fluorouracil
oxaliplatin
u + [89]
miR-429 0001536 colorectal 5-fluorouracil u + [90]
miR-34a-5p 0000255 colorectal 5-fluorouracil u [91]
miR-519c-3p 0002832 colorectal 5-fluorouracil
irinotecan
d + [92]
miR-520g-3p 0002858 colorectal 5-fluorouracil u + [93]
miR-23a-3p 0000078 colorectal 5-fluorouracil u + [94]
miR-96-5p 0000095 colorectal 5-fluorouracil u [95]
miR-587 0003253 colorectal 5-fluorouracil u + [96]
miR-218-5p 0000275 endometrial paclitaxel u [97]
miR-125b-5p 0000423 ewing sarcoma doxorubicin u + [98]
miR-145-5p 0000437 gallbladder cisplatin u [99]
miR-1284 0005941 gastric vincristine u [100]
miR-375 0000728 gastric cisplatin u [101]
miR-23b-3p 0000418 gastric MDR u [102]
miR-20a-5p 0000075 gastric cisplatin u + [103]
miR-34c-5p 0000686 gastric paclitaxel d + [104]
miR-16-5p 0000069 gastric etoposide
5-fluorouracil
u [105]
miR-9-5p 0000441 glioblastoma temozolomide u + [106]
miR-20a-5p 0000075 glioblastoma temozolomide u [107]
miR-21-5p 0000076 glioblastoma doxorubicin u + [108]
miR-873-5p 0004953 glioblastoma cisplatin u [109]
miR-210-3p 0000267 glioblastoma temozolomide u [110]
miR-138-5p 0000430 glioblastoma temozolomide u + [111]
miR-125b-5p 0000423 glioblastoma temozolomide u [112]
miR-203a-3p 0000264 glioblastoma d + [113]
let-7b-5p 0000063 glioblastoma cisplatin d + [114]
miR-181b-5p 0000257 glioma temozolomide u [115]
miR-124-3p 0000422 glioma temozolomide u [116]
miR-200a-3p 0000682 glioma temozolomide u [117]
miR-136-5p 0000448 glioma cisplatin u [118]
miR-10b-5p 0000254 head/neck squamous cell cisplatin u + [119]
miR-21-5p 0000076 hepatocellular u + [120]
miR-34a-5p 0000255 hepatocellular sorafenib u [121]
miR-26b-5p 0000083 hepatocellular doxorubicin u [122]
miR-106a-5p 0000103 hepatocellular gemcitabine d + [123]
miR-101-3p 0000099 hepatocellular cisplatin u [124]
miR-125b-5p 0000423 hepatocellular 5-fluorouracil u [125]
miR-145-5p 0000437 hepatocellular doxorubicin u [126]
miR-141-3p 0000432 hepatocellular 5-fluorouracil u + [127]
miR-122-5p 0000421 hepatocellular sorafenib d + [128]
miR-340-5p 0004692 hepatocellular cisplatin u [129]
miR-182-5p 0000259 hepatocellular cisplatin u + [130]
miR-215-5p 0000272 hepatocellular doxorubicin u + [131]
miR-135b-5p 0000758 leukaemia genotoxic agent treatment (eg., etoposide, doxorubicin) u + [132]
miR-196b-5p 0001080 u +
miR-17-3p 0000071 leukaemia d [133]
miR-17-5p 0000070 d
miR-20a-5p 0000075 d
miR-21-5p 0000076 leukaemia etoposide, doxorubicin d [134]
miR-181a-5p 0000256 leukaemia doxorubicin u + [135]
miR-181c-5p 0000258 leukaemia chronic myelocytic leukaemia u [136]
let-7a-5p 0000062 leukaemia cytarabine d + [137]
let-7c-5p 0000064 lung cisplatin u [138]
miR-1244 0005896 lung cisplatin u [139]
miR-96-5p 0000095 lung cisplatin u + [140]
miR-107 0000104 lung cisplatin u [141]
miR-378a-3p 0000732 lung cisplatin u [142]
miR-192-5p 0000222 lung cisplatin u + [143]
miR-205-5p 0000266 lung u + [144]
miR-21-5p 0000076 lung cisplatin d [145]
miR-24-3p 0000080 lung etoposide, cisplatin d + [146]
miR-299-3p 0000687 lung doxorubicin u [147]
miR-27a-3p 0000084 lung cisplatin u [148]
miR-551a 0003214 lung u + [149]
miR-100-5p 0000098 lung u + [150]
miR-146a-5p 0000449 lung cisplatin u + [151]
miR-182 (sequence not listed in paper) lung cisplatin u + [152]
miR-650 0003320 lung docetaxel u + [153]
miR-224-5p 0000281 lung cisplatin u + [154]
miR-451a 0001631 lung docetaxel u [155]
miR-15b-5p 0000417 lung cisplatin u [156]
miR-148b-3p 0000759 lung cisplatin u [157]
miR-205-5p 0000266 lung carboplatin u + [158]
miR-218-5p 0000275 u +
miR-26b-5p 0000083 lung d [159]
miR-192-5p 0000222 lung gemcitabine, cisplatin u [160]
miR-197-3p 0000227 lung platinum-based d + [161]
miR-7-5p 0000252 lung u [162]
miR-940 0004983 lung cisplatin d + [163]
miR-200b-3p 0000318 lung docetaxel u [164]
miR-200c-3p 0000617 lung methotrexate u [165]
miR-494-3p 0002816 lung u [166]
miR-377-3p 0000730 lymphoma
(b-cell)
venetoclax u + [167]
miR-125b-5p 0000423 lymphoma
(b-cell)
cyclophosphamide, doxorubicin, vincristine u + [168]
miR-130a-3p 0000425 u +
miR-21-5p 0000076 nasopharyngeal cisplatin u + [169]
miR-634 0003304 nasopharyngeal paclitaxel u [170]
miR-214-3p 0000271 oesophageal (squamous cell) cisplatin u [171]
miR-21-5p 0000076 oesophageal (squamous cell) 5-fluorouracil
cisplatin
(circulating miRnas)
u + [172]
miR-193a-3p 0000459 oesophageal chemoradiation u [173]
miR-27a-3p 0000084 oesophageal cisplatin u + [174]
miR-221-3p 0000278 oesophageal 5-fluorouracil u + [175]
miR-181a-5p 0000256 oral squamous cell cisplatin u [176]
miR-23a-3p 0000078 oral squamous cell cisplatin u + [177]
miR-143-3p 0000435 osteosarcoma doxorubicin d + [178]
miR-101-3p 0000099 osteosarcoma cisplatin
doxorubicin
methotrexate
u [179]
miR-29b-1 MI00000105
(precursor)
osteosarcoma u [180]
miR-33a-5p 0000091 osteosarcoma cisplatin u + [181]
miR-34c-5p 0000686 osteosarcoma u [182]
miR-301a-3p 0000688 osteosarcoma doxorubicin u + [183]
miR-22-3p 0000077 osteosarcoma u [184]
miR-382-5p 0000737 osteosarcoma u [185]
miR-193a-5p 0004614 osteo-/ewing sarcoma cisplatin u [186]
miR-136-5p 0000448 ovarian cisplatin u + [187]
miR-30a-5p 0000087 ovarian cisplatin u [188]
miR-149-5p 0000450 ovarian paclitaxel d + [189]
miR-9-5p 0000441 ovarian paclitaxel d + [190]
miR-21-3p 0004494 ovarian cisplatin u + [191]
miR-31-5p 0000089 ovarian cisplatin u + [192]
miR-31-5p 0000089 ovarian taxane u [193]
miR-29b-3p 0000100 ovarian paclitaxel d + [194]
miR-200a-3p 0000682 ovarian paclitaxel u [195]
miR-506-3p 0002878 ovarian cisplatin
olaparib
u [196]
miR-433-3p 0001627 ovarian paclitaxel u + [197]
miR-186-5p 0000456 ovarian cisplatin u [198]
miR-1307-3p 0005951 ovarian u + [199]
miR-224-5p 0000281 ovarian cisplatin u + [200]
miR-130a-3p 0000425 ovarian cisplatin u [201]
miR-374a-5p 0000727 u
miR-106a-5p 0000103 ovarian cisplatin u [202]
miR-106a-5p 0000103 ovarian paclitaxel u + [203]
miR-591 0003259 d +
miR-770-5p 0003948 ovarian cisplatin u [204]
miR-21-5p 0000076 ovarian paclitaxel; exosome-driven u + [205]
miR-199b-5p 0000263 ovarian cisplatin d + [206]
miR-145-5p 0000437 ovarian paclitaxel u [207]
let-7e-5p 0000066 ovarian cisplatin d + [208]
miR-152-3p 0000438 ovarian cisplatin u [209]
miR-128-3p 0000424 ovarian cisplatin d + [210]
miR-484 0002174 ovarian d + [211]
miR-642a-5p 0003312 d +
miR-217 0000274 d +
miR-23a-3p 0000078 ovarian u + [212]
miR-27b-3p 0000419 u +
miR-424-5p 0001341 u +
miR-503-5p 0002874 u +
miR-21-5p 0000076 ovarian carboplatin
paclitaxel
u + [213]
miR-214-3p 0000271 u +
miR-182-5p 0000259 ovarian cisplatin
paclitaxel
u + [214]
miR-200c-3p 0000617 pancreatic u - [215]
miR-33a-5p 0000091 pancreatic gemcitabine u - [216]
miR-17-92 cluster pancreatic d + [217]
miR-221-3p 0000278 pancreatic 5-fluorouracil u + [218]
miR-1246 0005898 pancreatic u + [219]
miR-181b-5p 0000257 pancreatic gemcitabine u + [220]
miR-494-3p 0002816 pancreatic u [221]
miR-101-3p 0000099 pancreatic gemcitabine u [222]
miR-100-5p 0000098 pancreatic (ductal) gemcitabine u + [223,224]
miR-21-5p 0000076 u +
miR-99a-5p 0000097 u +
miR-125b-5p 0000423 u +
miR-138-5p 0000430 u +
miR-210-3p 0000267 u +
miR-31-3p 0004504 d +
miR-330-3p 0000751 d +
miR-378-5p 0000731 d +
let-7a-5p 0000062 pancreatic gemcitabine u [225]
miR-205-5p 0000266 pancreatic gemcitabine u [226]
miR-506-3p 0002878 pancreatic d + [227]
miR-3176 0015053 prostate paclitaxel d + [228]
miR-141-3p 0000432 d +
miR-5004-5p 0021027 d +
miR-16-5p 0000069 d +
miR-3915 0018189 d +
miR-488-3p 0004763 d +
miR-23c 0018000 d +
miR-3673 0018096 d +
miR-3654 0018074 d +
miR-32-5p 0000090 u +
miR-606 0003274 u +
miR-381-3p 0000736 u +
miR-429 0001536 u +
miR-708 0004926 renal doxorubicin u [229]
let-7b-5p 0000063 renal 5-fluorouracil u [230]
let-7c-5p 0000064 u
miR-200c-3p 0000617 renal docetaxel d + [231]

The list of scientific literature depicting the involvement of miRNAs in cancer chemoresistance, as described above, highlights specific trends that require chemoresistance biomarker investigators to delve further for enhanced insight.

In essence, over 10% of all reported research findings of miRNA influences in cancer chemoresistance demonstrated that such a phenotype modulation was effected through simultaneous dysregulation of multiple miRNAs, rather than an individual putative chemoresistance miRNA—though no specific miRNA combination was identified as most prevalent by the authors [44,46,47,48,49,62,67,71,76,81,85,88,132,133,158,168,201,203,211,212,213,217,223,224,228,230]. This suggests that miRNA influences on cellular functions also occur at a more complex level, whereby it is a signature dysregulated expression pattern of two (or more) miRNAs that trigger simultaneous downregulation of a specific set of target transcripts leading to an ultimate change in cellular/tissue phenotype. Further evidence for this can be concluded by previous efforts carried out by the authors, whereby a set of seven putative chemoresistance miRNAs were identified for neuroblastoma—a paediatric cancer model [232].

The mechanistic links between miRNA activity and chemoresistance development that have been identified so far reveal that miRNA dysregulated expression can indeed influence the main cellular pathways (described in Section 2 above) that are directly affecting chemoresistance emergence in tumour models.

In the first instance, miRNAs have been recognized to regulate MDR-related molecular players such as multidrug resistance-associated protein 1 (MRP-1) [66]. The study carried out by Gao and colleagues identified the gene regulatory effects of miR-145-5p on MRP-1, ultimately enhancing the level of chemosensitivity in the doxorubicin resistant MCF-7 breast cancer cell line [66]. Furthermore, the study performed by Zhan and colleagues identified that MRP-1 could also be downregulated through the overexpression of miR-145-5p in cisplatin-resistant gallbladder tumour models, resulting in sensitizing of the tumour cells to cisplatin activity [99]. Similarly, the study conducted by Zhao and colleagues revealed that a combination of four miRNAs, namely miR-302a-3p/b-3p/c-3p/d-3p, concomitantly provide similar effects in doxorubicin-resistant breast cancer MCF-7 cell lines [71]. This study confirmed through RT-qPCR and Western blotting techniques that over-expression of these miRNAs induced sensitization to doxorubicin through a reduction in the expression level of MAP/ERK kinase 1 (MEKK1), leading to an overall downregulation of P-glycoprotein (P-gp) expression [71].

Other studies have demonstrated miRNA influences on the p53 pathway status as a means of inducing chemoresistance properties. The study conducted by Shen and colleagues recognized the effect of up-regulated miR-29a-3p in exacerbating doxorubicin-resistance in breast cancer cell lines, through its regulatory function on PTEN and GSK3β, that are two major components of the PTEN/AKT/GSK3β signalling pathway providing feedback to TP53 [55]. Further evidence for such miRNA influences on p53 modulation include the study carried out by Qin and colleagues, who revealed that the over-expression of miR-182-5p can induce cisplatin chemoresistance in hepatocellular carcinoma HepG2-Rcells [130]. This exacerbation was found to occur through the direct regulatory effect of the miRNA on tumour protein 53-induced nuclear protein 1 (TP53INP1) [130].

Evidence for the mechanistic link between miRNA activity and apoptotic pathway dysfunction for the emergence of chemoresistance in cancer includes the study performed by Zhang and colleagues [89]. The outcome of this investigation identified the exacerbating effect of miR-425-5p on chemoresistance in colorectal cancer HCT116 cell lines as well as in xenograft models, through direct action on programmed cell death 10 (PCD10) [89]. In addition, Stojcheva and colleagues reported the acquisition of chemoresistance properties by glioblastoma to alkylators such as temozolomide due to miR-138-5p direct regulatory function on BIM, which is a Bcl-2 interacting mediator of apoptosis [111]. Furthermore, miR-182-5p was also identified as playing a key role in the development of chemoresistance in ovarian carcinomas due to its gene-regulating capacity on programmed cell death 4 (PDCD4) [214].

The influences of miRNA activity on cell proliferative function, as another mechanism for chemoresistance emergence, is described through the study performed by Ye and colleagues on chemoresistant breast cancer cell line models [59]. This seminal investigation recognized the downregulatory effect of miR-484 on cytidine deaminase (CDA), which is a major molecular player in controlling cell proliferation through its suppressive function on cyclin E-CDK2 signalling, thereby inhibiting any cell-cycle progress [59]. Interestingly, the investigation conducted by Phatak and colleagues on oesophageal squamous cancer cell line models revealed that overexpression of miR-214-3p resulted in the sensitization of such tissue cultures to cisplatin [171]. Such a reduction in chemoresistance by miR-214-3p was mediated by direct regulation of surviving expression, together with indirect regulation by means of downregulation of CUG-BP1, leading to decreased mRNA stability in the targeted tumour cells [171].

Cytotoxic drug-induced DNA damage response pathway was also found to be affected by miRNA influence. The study performed by Li and colleagues identified that such a pathway can be activated by upregulation of the inhibitor of growth 5 (ING5) gene, which is in turn regulated by miR-193a-3p within the bladder cancer cell line 5637 [49]. In addition, inhibition of ING5 in this study resulted in a drastic reduction of the DNA damage response pathway within the same cell line [49].

Evidence for the modulation of cytotoxic drug targets by miRNAs can be reflected in the study performed by Liang and colleagues on gemcitabine resistant MiaPiaCa-2 pancreatic cell cancer models [216]. Results of this study led to the regulatory role of miR-33a in β-catenin downregulation, with the latter being a key molecular player in directing the expression levels of multiple genes including cyclin D1, surviving and MDR-1 [216].

In addition to the effect of multiple miRNAs on cancer chemoresistance, several studies reported the possible influences exhibited by circulating miRNAs (in blood), typically through extracellular vesicle or exosome transport [67,168,172,205,228].

Exosomes can be characterized as endocytic vesicles that can be secreted by multiple cell types within the human body, carrying a spectrum of molecular players, including miRNAs, for the purpose of cell-cell communication (e.g., antigen presentation) [233]. The transfer of genomic components such as mRNA and miRNAs between two individual cells of varying morphology, such as from bone marrow to mast cells, was also identified to lead to novel protein synthesis within the recipient cells [233]. Consequently, exosomal transfer can be reliably considered as an additional method of influence on multiple molecular pathways, since the desired physiological effect/s is induced from cellular populations situation within remote locations.

The effect of exosome activity can also be linked within the context of cancer chemoresistance, such as the findings described by Chen and colleagues [67]. This study highlighted the effect of exosomes on chemoresistant breast cancer cell lines, focusing on the transfer of miR-222-3p from doxorubicin resistant MCF-7 cell line to a chemosensitive MCF-7 cell line model [67]. This exosomal transfer ultimately rendered the recipient breast carcinoma cell line more resistant to doxorubicin activity following post-transfer functional assays [67].

Furthermore, the study carried out by Au Yeung and colleagues identified and validated the effect of exosomal transfer of miRNAs in drug resistant ovarian cancer models [205]. This study identified the exosomal transfer of miR-21-5p from cancer-associated adipocytes (within the omental stroma) into ovarian carcinoma cell populations [205]. This transfer ultimately conferred paclitaxel chemoresistance properties to the recipient ovarian carcinoma cells due to the direct regulatory effect of miR-21-5p on the transcript for apoptotic protease activating factor 1 (APAF1) [205].

Exosome transfer was also identified as being implicated in chemoresistance conferring to prostate cancer, as highlighted by the investigation by Li and colleagues [228]. The study identified 29 dysregulated miRNAs within exosomes derived from two paclitaxel resistant prostate cancer cell line models [228].

4. Influences of lncRNAs in Cancer Chemoresistance

Notwithstanding the myriad of networking interactions leading to miRNA directed gene regulatory effects within cellular populations, the more recent discovery of a separate family of non-coding RNAs, namely lncRNAs, leads to the identification of an additional level of gene regulation within the human body. According to the latest version of LNCipedia, there are over 60,000 members of the lncRNA family that have been catalogued [234,235]. LncRNAs are non-coding RNA genes of at least 200 nucleotides long. LncRNAs can either act as positive or negative regulators of target gene expression, with this activity being directed either on transcripts originating from the same locus as the lncRNA itself (cis-acting) or directed on target transcripts originating on other loci (trans-acting) [6].

Table 2 and Supplementary Materials Table S2 highlight in detail the currently reported scientific evidence for the influence of multiple lncRNAs on varying cancer models. Interestingly, previous studies have highlighted the detrimental effects of one individual lncRNA, known as homeobox transcript antisense RNA (HOTAIR), having an elevated prevalence within multiple tumour chemoresistance phenotypes [236,237,238].

Table 2.

Compendium of lncRNAs identified to influence cancer chemoresistance, either as oncogenic lncRNAs or as tumour suppressors. Table keys: u, Upregulated; d, Downregulated; +, Exacerbation; −, Inhibition.

lncRNA/s involved (Species—Homo sapiens) gene ID (LNCipedia.org—Where Applicable) Cancer Model Affected Chemo-Therapy Drugs Dysregulation Status Effect on Chemo-Resistance Phenotype Ref.
UCA1 UCA1 bladder cisplatin, gemcitabine u + [242,243]
NONHSAT028712 lnc-DGKA-1 breast doxorubicin u + [244]
NONHSAT057282 lnc-RP11-677O4.1.1-7 u +
NONHSAG023333 lnc-TXNDC2-7 u +
ARA lnc-ALG13-7 breast doxorubicin u + [245]
ATB lncRNA-AL589182 breast trastuzumab u + [246]
GAS5 GAS5 breast trastuzumab d + [247]
XIST XIST breast alkylating agents u + [248]
53BP1 Lnc-TP53BP1-1 d +
CCAT2 lnc-POU5F1B-8 breast 5-fluorouracil u + [249]
snaR lnc-BSPH1-1/2 colon 5-fluorouracil u + [250]
LINC00152 LINC00152 colon oxaliplatin u + [251]
SLC25A25-AS1 SLC25A25-AS1 colorectal d + [252]
MRUL (NR_024549) gastric MDR u + [239]
AK022798 lnc-TRAF3IP3-3 gastric cisplatin u + [253]
PVT1 PVT1 gastric MDR u + [254]
LINC-ROR LINC-ROR hepatocellular sorafenib, doxorubicin u + [255]
CCAT1 lnc-TMEM75-3 lung docetaxel u + [256]
AK126698 (LINC00969) lung cisplatin d + [257]
HOTAIR HOTAIR lung MDR u + [236,237]
GAS5 GAS5 lung EGFR-tyrosine kinase inhibitors u [240]
UCA1 UCA1 lung EGFR-tyrosine kinase inhibitors u + [241]
MEG3 MEG3 lung cisplatin u + [258]
GAS5 GAS5 lymphoma (mantle cell) mTOR inhibitors u [259]
N375709 (lnc-SRCIN1-1) nasopharyngeal paclitaxel d [260]
LINC-ROR LINC-ROR nasopharyngeal u + [261]
TUG1 TUG1 oesophageal u + [262]
LINC00161 LINC00161 osteosarcoma cisplatin u [263]
ODRUL FOXC2-AS1 osteosarcoma doxorubicin u + [264]
ODRUL FOXC2-AS1 osteosarcoma doxorubicin u + [265]
HOTAIR HOTAIR ovarian platinum-based drugs u + [238]
PVT1 PVT1 ovarian cisplatin u + [266]
UCA1 UCA1 ovarian u + [267]
HOTTIP BCYRN1 ovarian carboplatin d + [268]
HOTTIP BCYRN1 pancreatic gemcitabine u + [269]
PVT1 PVT1 pancreatic gemcitabine u + [270]
MALAT-1 MALAT1 pancreatic u + [271]
GAS5 GAS5 prostate mTOR inhibitors u [272]
UCA1 UCA1 breast tamoxifen u + [273]

The investigation carried out by Fang and colleagues focused on the possible effects of HOTAIR on chemoresistance in small cell lung cancer, mainly through knock-down of the lncRNA in chemoresistant and parental cell line models, followed by viability assays [236]. Apart from confirming HOTAIR knock-down with enhanced chemosensitivity of the affected cell lines to doxorubicin, cisplatin and etoposide, the study also recognized the chemoresistance phenotype was additionally linked to increased methylation of homeobox A1 (HOXA1), suggesting HOTAIR influences in affecting such a methylation status [236]. The study also confirmed that HOTAIR inhibition, through short hairpin RNA antagonist employment in murine tumour xenograft models for small cell lung cancer, led to a reduction in tumour growth [236].

In a similar study conducted by Liu and colleagues, HOTAIR expression was discovered to be up-regulated in the cisplatin-resistant A549 lung adenocarcinoma cell line model, with consequent re-sensitisation of the cell line to cisplatin exposure following HOTAIR knock-down [237]. This short interfering RNA (siRNA)-induced HOTAIR knock-down effect was also linked to enhanced cell cycle arrest and apoptosis, together with a reduction in cell proliferation, through control of p21WAF1/CIP1 expression [237].

Furthermore, the study performed by Ozes and colleagues investigated the possible influences of HOTAIR on ovarian cancer chemoresistance properties, specifically for platinum-based chemotherapeutic agent chemoresistance [238]. The results of the study highlighted exacerbated HOTAIR expression within platinum drug resistant ovarian tumour samples when compared to primary ovarian tumour counterpart samples [238]. The study also revealed that HOTAIR up-regulation allows for prolonged NF-KB expression, leading to extended DNA damage response mechanisms to take place, following platinum-based drug exposure and therefore contributing to the chemoresistance phenotype development [238].

In addition to HOTAIR, another putative chemoresistance lncRNA of particular interest is MRUL (NR_024549), since the chromosomal locus for MRUL is in close proximity to the locus for the Multi Drug Resistance 1 (MDR1) gene—the latter being recognised as the most important gene to induce cancer chemoresistance phenotypes [239]. Such a study highlights the unique properties of lncRNAs in their capacity to perform cis-regulatory functions on neighbouring transcripts of clinical relevance.

Evidence for the regulatory role of lncRNAs in directing both cell proliferative signalling and drug modulation mechanisms affecting chemoresistance can be found in the study performed by Dong and colleagues [240]. This particular study recognised the effect of GAS5 in enhancing apoptosis due to gefitinib activity within innate EGFR tyrosine-kinase inhibitor (TKI) resistant lung adenocarcinomas (A549 cell line), through the gene regulating role of GAS5 on insulin-like growth factor 1 receptor (IGF-1R) [240]. Interestingly, the investigation conducted by Cheng and colleagues identified UCA1 as being upregulated in acquired (non T790M) EGFR-TKI resistant non-small cell lung cancer [241]. UCA1 knockdown assays confirmed that this lncRNA, when downregulated, allowed for increased gefitinib sensitivity and furthermore inhibited AKT/mTOR functions [241].

5. Conclusions and Perspectives

In essence, it can be stated that ncRNAs do have a place in regulating cancer chemoresistance properties, merely based on the body of evidence described above. Furthermore, the recent scientific literature on this niche research reveals that both miRNAs and lncRNAs have important roles in affecting the main mechanisms currently known to lead to the development of cancer chemoresistance phenotypes (see Figure 1).

Figure 1.

Figure 1

Model of miRNA and lncRNA influences on varying molecular pathway mechanisms leading to downstream effects on cancer chemoresistance phenotypes.

Undoubtedly, the recent progress in molecular analytical and sequencing technologies has advanced to the levels that the entire miRnome/lncRNome can be quantified in a rapid and reliable manner, facilitating investigators’ efforts to identify unique expression profiles that are linked with defined tumour chemoresistance properties.

Such breakthroughs in technology are proving to be essential for biomarker researchers since evermore studies are leading to the paradigm that tumour clinical characteristics such as chemoresistance are the result of influence by multiple miRNAs and/or lncRNAs acting in a simultaneous manner, and not merely the outcome of one individual non-coding RNA’s dysregulated expression. The issue with this paradigm is the degree of complexity and resource consumption in carrying out detailed functional analyses to validate each permutation of non-coding RNA influences from an identified expression profile comprising just a handful of miRNAs/lncRNAs. Hopefully, further advances in bioinformatics and analytical technologies can permit more accurate trawling efforts to pinpoint such biomarkers and/or possibly allow for high throughput functional analyses for the entire miRnome/lncRNome in a rapid and effective manner.

The clinical importance for all global research efforts to identify and validate novel non-coding RNA biomarkers for cancer chemoresistance must certainly not be underestimated. The validation of reliable miRNA and/or lncRNA biomarkers for individual cancer chemoresistance (be it innate or acquired) can lead to the exploitation of such biomarkers as novel drug targets. Ultimately, antagonists and/or mimics (depending whether the miRNA/lncRNA is up- or down-regulated) for each non-coding RNA drug target can be developed and safely delivered as adjunct therapy together with conventional chemotherapeutic drugs. The adjuvant therapy leads to enhanced tumour sensitivity for the conventional chemotherapeutic drugs, therefore markedly enhancing chemotherapy effectiveness.

Alternatively, in patients who are particularly prone to the dose limiting adverse effects of conventional chemotherapy, the doses for the latter can be reduced due to the addition of the novel non-coding RNA-directed therapy. This leads to a great reduction in dose-limiting adverse effects and consequent discomfort in the cancer patient.

Finally, such chemoresistance biomarker expression profiles can be easily quantified from tumour biopsy through real time quantitative polymerase chain reaction (RT-qPCR) assays. The additional clinical information regarding the chemoresistance properties can provide the oncologist with valuable pre-emptive knowledge. Such additional information aids in developing a bespoke chemotherapy drug combination for the cancer patient that maximizes therapeutic efficacy and therefore minimises “trial and error” chemotherapy regimes, since the tumour would be exposed only to the chemotherapeutic agents to which it is fully sensitive.

However, efforts to render such a powerful theranostic technology is confronted with two main issues for it to become commonplace within global reach.

Firstly, the most effective technologies for accurate quantitative analysis of ncRNAs remain to be real-time, reverse transcription quantitative PCR (RT-qPCR) and next-generation sequencing. Both such technologies require sophisticated equipment and highly skilled staff dedicated to the processing of clinical samples for miRNA and lncRNA expression profiling. Eventually, these technologies can be miniaturized and simplified to the level of the development of a cost-effective point-of-care diagnostic apparatus that can be utilised by healthcare professionals with limited experience in the analytical technologies being employed.

Secondly, the issues regarding safe and effective drug delivery of novel miRNA and lncRNA therapeutics still pose a hurdle to rapid development of such translational medicine and effective availability for use by the individual cancer patient. Notwithstanding this issue however, the pharmaceutical industry are currently focusing hard on multiple circumvention methods for effectively providing efficient drug delivery options. These efforts are concentrated in pharmaceutical companies that are entirely dedicated to the research and development of miRNA and lncRNA-based therapeutics.

However, the authors sincerely believe that, despite such challenges, the advent of such novel clinical oncology drug treatment/management protocols will become a reality within the hospital setting in the not too distant future.

Supplementary Materials

The following are available online at www.mdpi.com/2073-4425/8/3/95/s1, Table S1: Frequency chart depicting prevalence of individual miRNAs in specific cancer models reported in the literature (as depicted in Table 1 above) and from the data reported in the review article by Garofalo and Croce [42], Table S2: Frequency chart depicting prevalence of individual lncRNAs in specific cancer models reported in the literature (as depicted in Table 2 above).

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Ayers D., Day P.J. Unlocking the potential of RNA interference as a therapeutic tool. Malta Med. J. 2009;21:13–19. [Google Scholar]
  • 2.Ambros V. microRNAs: Tiny regulators with great potential. Cell. 2001;107:823–826. doi: 10.1016/S0092-8674(01)00616-X. [DOI] [PubMed] [Google Scholar]
  • 3.Ayers D., Baron B., Hunter T. miRNA Influences in NRF2 Pathway Interactions within cancer models. J. Nucleic Acids. 2015;2015:143636. doi: 10.1155/2015/143636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Stallings R.L. MicroRNA involvement in the pathogenesis of neuroblastoma: Potential for microRNA mediated therapeutics. Curr. Pharm. Des. 2009;15:456–462. doi: 10.2174/138161209787315837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ayers D. RNAi Technology. Science Publishers; New York, NY, USA: 2011. Implications of miRNA-directed gene silencing in cancer. [Google Scholar]
  • 6.Ayers D. Long Non-Coding RNAs: Novel Emergent Biomarkers for Cancer Diagnostics. J. Cancer Res. Treat. 2013;1:31–35. [Google Scholar]
  • 7.Ayers D., Nasti A. Utilisation of nanoparticle technology in cancer chemoresistance. J. Drug Deliv. 2012;2012:265691. doi: 10.1155/2012/265691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lage H. Gene Therapeutic Approaches to Overcome ABCB1-Mediated Drug Resistance. Recent Results Cancer Res. 2016;209:87–94. doi: 10.1007/978-3-319-42934-2_6. [DOI] [PubMed] [Google Scholar]
  • 9.Schmitt S.M., Stefan K., Wiese M. Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1) Biochim. Biophys. Acta. 2017;1859:69–79. doi: 10.1016/j.bbamem.2016.10.017. [DOI] [PubMed] [Google Scholar]
  • 10.Robey R.W., Massey P.R., Amiri-Kordestani L., Bates S.E. ABC transporters: Unvalidated therapeutic targets in cancer and the CNS. Anticancer Agents Med. Chem. 2010;10:625–633. doi: 10.2174/187152010794473957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 2000;11:265–283. doi: 10.1016/s0928-0987(00)00114-7. [DOI] [PubMed] [Google Scholar]
  • 12.Colone M., Calcabrini A., Toccacieli L., Bozzuto G., Stringaro A., Gentile M., Cianfriglia M., Ciervo A., Caraglia M., Budillon A., et al. The multidrug transporter P-glycoprotein: A mediator of melanoma invasion? J. Investig. Dermatol. 2008;128:957–971. doi: 10.1038/sj.jid.5701082. [DOI] [PubMed] [Google Scholar]
  • 13.MacLaine N.J., Hupp T.R. How phosphorylation controls p53. Cell Cycle. 2011;10:916–921. doi: 10.4161/cc.10.6.15076. [DOI] [PubMed] [Google Scholar]
  • 14.Macchiarulo A., Giacchè N., Mancini F., Puxeddu E., Moretti F., Pellicciari R. Alternative strategies for targeting mouse double minute 2 activity with small molecules: Novel patents on the horizon? Expert Opin. Ther. Pat. 2011;21:287–294. doi: 10.1517/13543776.2011.546349. [DOI] [PubMed] [Google Scholar]
  • 15.Mogi A., Kuwano H. TP53 mutations in nonsmall cell lung cancer. J. Biomed. Biotechnol. 2011;2011:583929. doi: 10.1155/2011/583929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Plati J., Bucur O., Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol. Quant. Biosci. Nano Macro. 2011;3:279–296. doi: 10.1039/c0ib00144a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rolland S.G., Conradt B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr. Opin. Cell Biol. 2010;22:852–858. doi: 10.1016/j.ceb.2010.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Gandhi L., Camidge D.R., Ribeiro de Oliveira M., Bonomi P., Gandara D., Khaira D., Hann C.L., McKeegan E.M., Litvinovich E., Hemken P.M., et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol. 2011;29:909–916. doi: 10.1200/JCO.2010.31.6208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Yu Z., Wang R., Xu L., Xie S., Dong J., Jing Y. β-Elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and generation of ROS. PLoS ONE. 2011;6:e15843. doi: 10.1371/journal.pone.0015843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Avraham R., Yarden Y. Feedback regulation of EGFR signalling: Decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 2011;12:104–117. doi: 10.1038/nrm3048. [DOI] [PubMed] [Google Scholar]
  • 21.Chuang S.E., Yeh P.Y., Lu Y.S., Lai G.M., Liao C.M., Gao M., Cheng A.L. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem. Pharmacol. 2002;63:1709–1716. doi: 10.1016/S0006-2952(02)00931-0. [DOI] [PubMed] [Google Scholar]
  • 22.Olmos Y., Brosens J.J., Lam E.W.-F. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist. Updat. 2011;14:35–44. doi: 10.1016/j.drup.2010.12.001. [DOI] [PubMed] [Google Scholar]
  • 23.Arora S., Kothandapani A., Tillison K., Kalman-Maltese V., Patrick S.M. Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair. 2010;9:745–753. doi: 10.1016/j.dnarep.2010.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kim H., An J.Y., Noh S.H., Shin S.K., Lee Y.C., Kim H. High microsatellite instability predicts good prognosis in intestinal-type gastric cancers. J. Gastroenterol. Hepatol. 2011;26:585–592. doi: 10.1111/j.1440-1746.2010.06487.x. [DOI] [PubMed] [Google Scholar]
  • 25.Martin L.P., Hamilton T.C., Schilder R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008;14:1291–1295. doi: 10.1158/1078-0432.CCR-07-2238. [DOI] [PubMed] [Google Scholar]
  • 26.Assaraf Y.G. Molecular basis of antifolate resistance. Cancer Metastasis Rev. 2007;26:153–181. doi: 10.1007/s10555-007-9049-z. [DOI] [PubMed] [Google Scholar]
  • 27.Yeung J., Esposito M.T., Gandillet A., Zeisig B.B., Griessinger E., Bonnet D., So C.W.E. β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606–618. doi: 10.1016/j.ccr.2010.10.032. [DOI] [PubMed] [Google Scholar]
  • 28.Ren J., Singh B.N., Huang Q., Li Z., Gao Y., Mishra P., Hwa Y.L., Li J., Dowdy S.C., Jiang S.-W. DNA hypermethylation as a chemotherapy target. Cell. Signal. 2011;23:1082–1093. doi: 10.1016/j.cellsig.2011.02.003. [DOI] [PubMed] [Google Scholar]
  • 29.Banerjee Mustafi S., Chakraborty P.K., Naz S., Dwivedi S.K.D., Street M., Basak R., Yang D., Ding K., Mukherjee P., Bhattacharya R. MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochim. Biophys. Acta. 2016;1859:983–993. doi: 10.1016/j.bbagrm.2016.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lee M.-R., Ji S.-Y., Mia-Jan K., Cho M.-Y. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression. Biochem. Biophys. Res. Commun. 2015;463:229–234. doi: 10.1016/j.bbrc.2015.05.031. [DOI] [PubMed] [Google Scholar]
  • 31.Xia L.-L., Tang Y.-B., Song F.-F., Xu L., Ji P., Wang S.-J., Zhu J.-M., Zhang Y., Zhao G.-P., Wang Y., et al. DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget. 2016 doi: 10.18632/oncotarget.11864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Yao J., Wei X., Lu Y. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells. Biochem. Biophys. Res. Commun. 2016;473:867–873. doi: 10.1016/j.bbrc.2016.03.141. [DOI] [PubMed] [Google Scholar]
  • 33.Zhan M., Wang H., Chen T., Chen W., Yang L., He M., Xu S., Wang J. NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer. Biochem. Biophys. Res. Commun. 2015;468:79–85. doi: 10.1016/j.bbrc.2015.10.161. [DOI] [PubMed] [Google Scholar]
  • 34.Gibb E.A., Brown C.J., Lam W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer. 2011;10:38. doi: 10.1186/1476-4598-10-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Gibb E.A., Enfield K.S.S., Stewart G.L., Lonergan K.M., Chari R., Ng R.T., Zhang L., MacAulay C.E., Rosin M.P., Lam W.L. Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol. 2011;47:1055–1061. doi: 10.1016/j.oraloncology.2011.07.008. [DOI] [PubMed] [Google Scholar]
  • 36.Lai E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002;30:363–364. doi: 10.1038/ng865. [DOI] [PubMed] [Google Scholar]
  • 37.McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002;3:737–747. doi: 10.1038/nrg908. [DOI] [PubMed] [Google Scholar]
  • 38.Ponting C.P., Oliver P.L., Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–641. doi: 10.1016/j.cell.2009.02.006. [DOI] [PubMed] [Google Scholar]
  • 39.Shamovsky I., Nudler E. Gene control by large noncoding RNAs. Sci. STKE. 2006;2006:pe40. doi: 10.1126/stke.3552006pe40. [DOI] [PubMed] [Google Scholar]
  • 40.Carta A., Chetcuti R., Ayers D. An Introspective Update on the Influence of miRNAs in Breast Carcinoma and Neuroblastoma Chemoresistance. Genet. Res. Int. 2014;2014:743050. doi: 10.1155/2014/743050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Garofalo M., Croce C.M. MicroRNAs as therapeutic targets in chemoresistance. Rev. Comment. Antimicrob. Anticancer Chemother. 2013;16:47–59. doi: 10.1016/j.drup.2013.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Van Peer G., Lefever S., Anckaert J., Beckers A., Rihani A., Van Goethem A., Volders P.-J., Zeka F., Ongenaert M., Mestdagh P., et al. miRBase Tracker: Keeping track of microRNA annotation changes. Database J. Biol. Databases Curation. 2014;2014:3419–3420. doi: 10.1093/database/bau080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Amir S., Mabjeesh N.J. microRNA expression profiles as decision-making biomarkers in the management of bladder cancer. Histol. Histopathol. 2017;32:107–119. doi: 10.14670/HH-11-814. [DOI] [PubMed] [Google Scholar]
  • 45.Vinall R.L., Tepper C.G., Ripoll A.A.Z., Gandour-Edwards R.F., Durbin-Johnson B.P., Yap S.A., Ghosh P.M., deVere White R.W. Decreased expression of let-7c is associated with non-response of muscle-invasive bladder cancer patients to neoadjuvant chemotherapy. Genes Cancer. 2016;7:86–97. doi: 10.18632/genesandcancer.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kozinn S.I., Harty N.J., Delong J.M., Deliyiannis C., Logvinenko T., Summerhayes I.C., Libertino J.A., Holway A.H., Rieger-Christ K.M. MicroRNA Profile to Predict Gemcitabine Resistance in Bladder Carcinoma Cell Lines. Genes Cancer. 2013;4:61–69. doi: 10.1177/1947601913484495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Deng H., Lv L., Li Y., Zhang C., Meng F., Pu Y., Xiao J., Qian L., Zhao W., Liu Q., et al. The miR-193a-3p regulated PSEN1 gene suppresses the multi-chemoresistance of bladder cancer. Biochim. Biophys. Acta. 2015;1852:520–528. doi: 10.1016/j.bbadis.2014.12.014. [DOI] [PubMed] [Google Scholar]
  • 48.Deng H., Lv L., Li Y., Zhang C., Meng F., Pu Y., Xiao J., Qian L., Zhao W., Liu Q., et al. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway. Mol. Cancer. 2014;13:234. doi: 10.1186/1476-4598-13-234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Li Y., Deng H., Lv L., Zhang C., Qian L., Xiao J., Zhao W., Liu Q., Zhang D., Wang Y., et al. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget. 2015;6:10195–10206. doi: 10.18632/oncotarget.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Wu Z.-H., Tao Z.-H., Zhang J., Li T., Ni C., Xie J., Zhang J.-F., Hu X.-C. MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumour Biol. 2016;37:7245–7254. doi: 10.1007/s13277-015-4604-7. [DOI] [PubMed] [Google Scholar]
  • 51.Wang Z., Wang N., Liu P., Chen Q., Situ H., Xie T., Zhang J., Peng C., Lin Y., Chen J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget. 2014;5:7013–7026. doi: 10.18632/oncotarget.2192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Wang H.-J., Guo Y.-Q., Tan G., Dong L., Cheng L., Li K.-J., Wang Z.-Y., Luo H.-F. miR-125b regulates side population in breast cancer and confers a chemoresistant phenotype. J. Cell. Biochem. 2013;114:2248–2257. doi: 10.1002/jcb.24574. [DOI] [PubMed] [Google Scholar]
  • 53.He D.-X., Gu X.-T., Li Y.-R., Jiang L., Jin J., Ma X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J. 2014;281:4718–4730. doi: 10.1111/febs.13012. [DOI] [PubMed] [Google Scholar]
  • 54.He D.-X., Gu X.-T., Jiang L., Jin J., Ma X. A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol. Pharmacol. 2014;86:536–547. doi: 10.1124/mol.114.092759. [DOI] [PubMed] [Google Scholar]
  • 55.Shen H., Li L., Yang S., Wang D., Zhong S., Zhao J., Tang J. MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway. Gene. 2016;593:84–90. doi: 10.1016/j.gene.2016.08.016. [DOI] [PubMed] [Google Scholar]
  • 56.Zhang Y., Wang Y., Wei Y., Li M., Yu S., Ye M., Zhang H., Chen S., Liu W., Zhang J. MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition. Sci. Rep. 2015;5:15424. doi: 10.1038/srep15424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zhang H., Sun D.-W., Mao L., Zhang J., Jiang L.-H., Li J., Wu Y., Ji H., Chen W., Wang J., et al. MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochem. Biophys. Res. Commun. 2015;465:702–713. doi: 10.1016/j.bbrc.2015.08.053. [DOI] [PubMed] [Google Scholar]
  • 58.Lv J., Fu Z., Shi M., Xia K., Ji C., Xu P., Lv M., Pan B., Dai L., Xie H. Systematic analysis of gene expression pattern in has-miR-760 overexpressed resistance of the MCF-7 human breast cancer cell to doxorubicin. Biomed. Pharmacother. Bioméd. Pharmacothér. 2015;69:162–169. doi: 10.1016/j.biopha.2014.11.028. [DOI] [PubMed] [Google Scholar]
  • 59.Ye F.-G., Song C.-G., Cao Z.-G., Xia C., Chen D.-N., Chen L., Li S., Qiao F., Ling H., Yao L., et al. Cytidine Deaminase Axis Modulated by miR-484 Differentially Regulates Cell Proliferation and Chemoresistance in Breast Cancer. Cancer Res. 2015;75:1504–1515. doi: 10.1158/0008-5472.CAN-14-2341. [DOI] [PubMed] [Google Scholar]
  • 60.Masciarelli S., Fontemaggi G., Di Agostino S., Donzelli S., Carcarino E., Strano S., Blandino G. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene. 2014;33:1601–1608. doi: 10.1038/onc.2013.106. [DOI] [PubMed] [Google Scholar]
  • 61.Chen X., Wang Y.-W., Xing A.-Y., Xiang S., Shi D.-B., Liu L., Li Y.-X., Gao P. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J. Pathol. 2016;239:459–472. doi: 10.1002/path.4743. [DOI] [PubMed] [Google Scholar]
  • 62.Zhang J., Zhang H., Chen L., Sun D.W., Mao C., Chen W., Wu J.Z., Zhong S.L., Zhao J.H., Tang J.H. β-elemene reverses chemoresistance of breast cancer via regulating MDR-related microRNA expression. Cell. Physiol. Biochem. 2014;34:2027–2037. doi: 10.1159/000366398. [DOI] [PubMed] [Google Scholar]
  • 63.Wu J., Li S., Jia W., Deng H., Chen K., Zhu L., Yu F., Su F. Reduced Let-7a Is Associated with Chemoresistance in Primary Breast Cancer. PLoS ONE. 2015;10:e0133643. doi: 10.1371/journal.pone.0133643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Zheng Y., Lv X., Wang X., Wang B., Shao X., Huang Y., Shi L., Chen Z., Huang J., Huang P. MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol. Rep. 2016;35:683–690. doi: 10.3892/or.2015.4417. [DOI] [PubMed] [Google Scholar]
  • 65.Yao Y.-S., Qiu W.-S., Yao R.-Y., Zhang Q., Zhuang L.-K., Zhou F., Sun L.-B., Yue L. miR-141 confers docetaxel chemoresistance of breast cancer cells via regulation of EIF4E expression. Oncol. Rep. 2015;33:2504–2512. doi: 10.3892/or.2015.3866. [DOI] [PubMed] [Google Scholar]
  • 66.Gao M., Miao L., Liu M., Li C., Yu C., Yan H., Yin Y., Wang Y., Qi X., Ren J. miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 2016;7:59714–59726. doi: 10.18632/oncotarget.10845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Chen W., Liu X., Lv M., Chen L., Zhao J., Zhong S., Ji M., Hu Q., Luo Z., Wu J., et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE. 2014;9:e95240. doi: 10.1371/journal.pone.0095240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Bockhorn J., Dalton R., Nwachukwu C., Huang S., Prat A., Yee K., Chang Y.-F., Huo D., Wen Y., Swanson K.E., et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat. Commun. 2013;4:1393. doi: 10.1038/ncomms2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Shen R., Wang Y., Wang C.-X., Yin M., Liu H.-L., Chen J.-P., Han J.-Q., Wang W.-B. MiRNA-155 mediates TAM resistance by modulating SOCS6-STAT3 signalling pathway in breast cancer. Am. J. Transl. Res. 2015;7:2115–2126. [PMC free article] [PubMed] [Google Scholar]
  • 70.Hu H., Li S., Cui X., Lv X., Jiao Y., Yu F., Yao H., Song E., Chen Y., Wang M., Lin L. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2) J. Biol. Chem. 2013;288:10973–10985. doi: 10.1074/jbc.M112.434340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Zhao L., Wang Y., Jiang L., He M., Bai X., Yu L., Wei M. MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1) J. Exp. Clin. Cancer Res. 2016;35:25. doi: 10.1186/s13046-016-0300-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kopp F., Oak P.S., Wagner E., Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS ONE. 2012;7:e50469. doi: 10.1371/journal.pone.0050469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Chen Y., Ke G., Han D., Liang S., Yang G., Wu X. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp. Cell Res. 2014;320:12–20. doi: 10.1016/j.yexcr.2013.10.014. [DOI] [PubMed] [Google Scholar]
  • 74.Fan Z., Cui H., Yu H., Ji Q., Kang L., Han B., Wang J., Dong Q., Li Y., Yan Z., et al. MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression. Oncogenesis. 2016;5:e197. doi: 10.1038/oncsis.2016.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Zhu Z., Wang C.-P., Zhang Y.-F., Nie L. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR. Asian Pac. J. Cancer Prev. 2014;15:917–923. doi: 10.7314/APJCP.2014.15.2.917. [DOI] [PubMed] [Google Scholar]
  • 76.Hu J., Xu Y., Cai S. Specific microRNAs as novel biomarkers for combination chemotherapy resistance detection of colon adenocarcinoma. Eur. J. Med. Res. 2015;20:95. doi: 10.1186/s40001-015-0183-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Li X., Zhao H., Zhou X., Song L. Inhibition of lactate dehydrogenase A by microRNA-34a resensitizes colon cancer cells to 5-fluorouracil. Mol. Med. Rep. 2015;11:577–582. doi: 10.3892/mmr.2014.2726. [DOI] [PubMed] [Google Scholar]
  • 78.He J., Xie G., Tong J., Peng Y., Huang H., Li J., Wang N., Liang H. Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem. Biophys. 2014;70:1343–1350. doi: 10.1007/s12013-014-0062-x. [DOI] [PubMed] [Google Scholar]
  • 79.Tan S., Shi H., Ba M., Lin S., Tang H., Zeng X., Zhang X. miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int. J. Mol. Med. 2016;37:1030–1038. doi: 10.3892/ijmm.2016.2492. [DOI] [PubMed] [Google Scholar]
  • 80.Chai J., Dong W., Xie C., Wang L., Han D.-L., Wang S., Guo H.-L., Zhang Z.-L. MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life. 2015;67:191–201. doi: 10.1002/iub.1361. [DOI] [PubMed] [Google Scholar]
  • 81.Chen J., Chen Y., Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer. Cancer Investig. 2013;31:17–23. doi: 10.3109/07357907.2012.743557. [DOI] [PubMed] [Google Scholar]
  • 82.Li P.-L., Zhang X., Wang L.-L., Du L.-T., Yang Y.-M., Li J., Wang C.-X. MicroRNA-218 is a prognostic indicator in colorectal cancer and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis. 2015;36:1484–1493. doi: 10.1093/carcin/bgv145. [DOI] [PubMed] [Google Scholar]
  • 83.Liu Y., Gao S., Chen X., Liu M., Mao C., Fang X. Overexpression of miR-203 sensitizes paclitaxel (Taxol)-resistant colorectal cancer cells through targeting the salt-inducible kinase 2 (SIK2) Tumour Biol. 2016;37:12231–12239. doi: 10.1007/s13277-016-5066-2. [DOI] [PubMed] [Google Scholar]
  • 84.Li T., Gao F., Zhang X.-P. miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Oncol. Rep. 2015;33:607–614. doi: 10.3892/or.2014.3646. [DOI] [PubMed] [Google Scholar]
  • 85.Hu J., Cai G., Xu Y., Cai S. The Plasma microRNA miR-1914* and -1915 Suppresses Chemoresistant in Colorectal Cancer Patients by Down-regulating NFIX. Curr. Mol. Med. 2016;16:70–82. doi: 10.2174/1566524016666151222144656. [DOI] [PubMed] [Google Scholar]
  • 86.Wu H., Liang Y., Shen L., Shen L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol. Open. 2016;5:563–570. doi: 10.1242/bio.015008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Liu H., Yin Y., Hu Y., Feng Y., Bian Z., Yao S., Li M., You Q., Huang Z. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1. Pathol. Res. Pract. 2016;212:643–649. doi: 10.1016/j.prp.2016.04.011. [DOI] [PubMed] [Google Scholar]
  • 88.Eyking A., Reis H., Frank M., Gerken G., Schmid K.W., Cario E. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer. PLoS ONE. 2016;11:e0156871. doi: 10.1371/journal.pone.0156871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Zhang Y., Hu X., Miao X., Zhu K., Cui S., Meng Q., Sun J., Wang T. MicroRNA-425-5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10. J. Cell. Mol. Med. 2016;20:360–369. doi: 10.1111/jcmm.12742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Dong S.-J., Cai X.-J., Li S.-J. The Clinical Significance of MiR-429 as a Predictive Biomarker in Colorectal Cancer Patients Receiving 5-Fluorouracil Treatment. Med. Sci. Monit. 2016;22:3352–3361. doi: 10.12659/MSM.900674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Siemens H., Jackstadt R., Kaller M., Hermeking H. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget. 2013;4:1399–1415. doi: 10.18632/oncotarget.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.To K.K.W., Leung W.W., Ng S.S.M. Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp. Cell Res. 2015;338:222–231. doi: 10.1016/j.yexcr.2015.09.011. [DOI] [PubMed] [Google Scholar]
  • 93.Zhang Y., Geng L., Talmon G., Wang J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J. Biol. Chem. 2015;290:6215–6225. doi: 10.1074/jbc.M114.620252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Li X., Li X., Liao D., Wang X., Wu Z., Nie J., Bai M., Fu X., Mei Q., Han W. Elevated microRNA-23a Expression Enhances the Chemoresistance of Colorectal Cancer Cells with Microsatellite Instability to 5-Fluorouracil by Directly Targeting ABCF1. Curr. Protein Pept. Sci. 2015;16:301–309. doi: 10.2174/138920371604150429153309. [DOI] [PubMed] [Google Scholar]
  • 95.Kim S.-A., Kim I., Yoon S.K., Lee E.K., Kuh H.-J. Indirect modulation of sensitivity to 5-fluorouracil by microRNA-96 in human colorectal cancer cells. Arch. Pharm. Res. 2015;38:239–248. doi: 10.1007/s12272-014-0528-9. [DOI] [PubMed] [Google Scholar]
  • 96.Zhang Y., Talmon G., Wang J. MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis. 2015;6:e1845. doi: 10.1038/cddis.2015.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Ran X., Yang J., Liu C., Zhou P., Xiao L., Zhang K. MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy. Int. J. Clin. Exp. Pathol. 2015;8:6617–6626. [PMC free article] [PubMed] [Google Scholar]
  • 98.Iida K., Fukushi J.-I., Matsumoto Y., Oda Y., Takahashi Y., Fujiwara T., Fujiwara-Okada Y., Hatano M., Nabashima A., Kamura S., et al. miR-125b develops chemoresistance in Ewing sarcoma/primitive neuroectodermal tumor. Cancer Cell Int. 2013;13:21. doi: 10.1186/1475-2867-13-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Zhan M., Zhao X., Wang H., Chen W., Xu S., Wang W., Shen H., Huang S., Wang J. miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumour Biol. 2016;37:10553–10562. doi: 10.1007/s13277-016-4957-6. [DOI] [PubMed] [Google Scholar]
  • 100.Cao W., Wei W., Zhan Z., Xie Y., Xiao Q. MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1. Oncol. Rep. 2016;35:2583–2591. doi: 10.3892/or.2016.4643. [DOI] [PubMed] [Google Scholar]
  • 101.Zhou N., Qu Y., Xu C., Tang Y. Upregulation of microRNA-375 increases the cisplatin-sensitivity of human gastric cancer cells by regulating ERBB2. Exp. Ther. Med. 2016;11:625–630. doi: 10.3892/etm.2015.2920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.An Y., Zhang Z., Shang Y., Jiang X., Dong J., Yu P., Nie Y., Zhao Q. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 2015;6:e1766. doi: 10.1038/cddis.2015.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Zhu M., Zhou X., Du Y., Huang Z., Zhu J., Xu J., Cheng G., Shu Y., Liu P., Zhu W., et al. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol. Med. Rep. 2016;14:1742–1750. doi: 10.3892/mmr.2016.5413. [DOI] [PubMed] [Google Scholar]
  • 104.Wu H., Huang M., Lu M., Zhu W., Shu Y., Cao P., Liu P. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother. Pharmacol. 2013;71:1159–1171. doi: 10.1007/s00280-013-2108-y. [DOI] [PubMed] [Google Scholar]
  • 105.Wang F., Song X., Li X., Xin J., Wang S., Yang W., Wang J., Wu K., Chen X., Liang J., et al. Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system. PLoS ONE. 2013;8:e61792. doi: 10.1371/journal.pone.0061792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Munoz J.L., Rodriguez-Cruz V., Rameshwar P. High expression of miR-9 in CD133(+) glioblastoma cells in chemoresistance to temozolomide. J. Cancer Stem Cell Res. 2015;3:e1003. doi: 10.14343/JCSCR.2015.3e1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Zhou D., Wan Y., Xie D., Wang Y., Wei J., Yan Q., Lu P., Mo L., Xie J., Yang S., Qi X. DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells. Exp. Mol. Med. 2015;47:e182. doi: 10.1038/emm.2015.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Giunti L., da Ros M., Vinci S., Gelmini S., Iorio A.L., Buccoliero A.M., Cardellicchio S., Castiglione F., Genitori L., de Martino M., et al. Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am. J. Cancer Res. 2015;5:231–242. [PMC free article] [PubMed] [Google Scholar]
  • 109.Chen X., Zhang Y., Shi Y., Lian H., Tu H., Han S., Peng B., Liu W., He X. MiR-873 acts as a novel sensitizer of glioma cells to cisplatin by targeting Bcl-2. Int. J. Oncol. 2015;47:1603–1611. doi: 10.3892/ijo.2015.3143. [DOI] [PubMed] [Google Scholar]
  • 110.Lee D., Sun S., Zhang X.Q., Zhang P.D., Ho A.S.W., Kiang K.M.Y., Fung C.F., Lui W.M., Leung G.K.K. MicroRNA-210 and Endoplasmic Reticulum Chaperones in the Regulation of Chemoresistance in Glioblastoma. J. Cancer. 2015;6:227–232. doi: 10.7150/jca.10765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Stojcheva N., Schechtmann G., Sass S., Roth P., Florea A.-M., Stefanski A., Stühler K., Wolter M., Müller N.S., Theis F.J., et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937–12950. doi: 10.18632/oncotarget.7346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Haemmig S., Baumgartner U., Glück A., Zbinden S., Tschan M.P., Kappeler A., Mariani L., Vajtai I., Vassella E. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas. Cell Death Dis. 2014;5:e1279. doi: 10.1038/cddis.2014.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Liao H., Bai Y., Qiu S., Zheng L., Huang L., Liu T., Wang X., Liu Y., Xu N., Yan X., et al. MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2. Oncotarget. 2015;6:8914–8928. doi: 10.18632/oncotarget.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Guo Y., Yan K., Fang J., Qu Q., Zhou M., Chen F. Let-7b expression determines response to chemotherapy through the regulation of cyclin D1 in glioblastoma. J. Exp. Clin. Cancer Res. CR. 2013;32:41. doi: 10.1186/1756-9966-32-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Wang J., Sai K., Chen F., Chen Z. miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother. Pharmacol. 2013;72:147–158. doi: 10.1007/s00280-013-2180-3. [DOI] [PubMed] [Google Scholar]
  • 116.Shi Z., Chen Q., Li C., Wang L., Qian X., Jiang C., Liu X., Wang X., Li H., Kang C., et al. MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras. Neuro-Oncol. 2014;16:1341–1353. doi: 10.1093/neuonc/nou084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Berthois Y., Delfino C., Metellus P., Fina F., Nanni-Metellus I., Al Aswy H., Pirisi V., Ouafik L., Boudouresque F. Differential expression of miR200a-3p and miR21 in grade II-III and grade IV gliomas: Evidence that miR200a-3p is regulated by O6-methylguanine methyltransferase and promotes temozolomide responsiveness. Cancer Biol. Ther. 2014;15:938–950. doi: 10.4161/cbt.28920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Chen W., Yang Y., Chen B., Lu P., Zhan L., Yu Q., Cao K., Li Q. MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells. J. Neurooncol. 2014;120:43–53. doi: 10.1007/s11060-014-1535-x. [DOI] [PubMed] [Google Scholar]
  • 119.Bourguignon L.Y.W., Wong G., Shiina M. Up-regulation of Histone Methyltransferase, DOT1L, by Matrix Hyaluronan Promotes MicroRNA-10 Expression Leading to Tumor Cell Invasion and Chemoresistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma. J. Biol. Chem. 2016;291:10571–10585. doi: 10.1074/jbc.M115.700021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Zhang K., Chen J., Chen D., Huang J., Feng B., Han S., Chen Y., Song H., De W., Zhu Z., et al. Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget. 2014;5:12916–12935. doi: 10.18632/oncotarget.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Yang F., Li Q., Gong Z., Zhou L., You N., Wang S., Li X., Li J., An J., Wang D., He Y., Dou K. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat. 2014;13:77–86. doi: 10.7785/tcrt.2012.500364. [DOI] [PubMed] [Google Scholar]
  • 122.Zhao N., Wang R., Zhou L., Zhu Y., Gong J., Zhuang S.-M. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol. Cancer. 2014;13:35. doi: 10.1186/1476-4598-13-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Wang R., Li Y., Hou Y., Yang Q., Chen S., Wang X., Wang Z., Yang Y., Chen C., Wang Z., et al. The PDGF-D/miR-106a/Twist1 pathway orchestrates epithelial-mesenchymal transition in gemcitabine resistance hepatoma cells. Oncotarget. 2015;6:7000–7010. doi: 10.18632/oncotarget.3193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Xu Y., An Y., Wang Y., Zhang C., Zhang H., Huang C., Jiang H., Wang X., Li X. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 2013;29:2019–2024. doi: 10.3892/or.2013.2338. [DOI] [PubMed] [Google Scholar]
  • 125.Jiang J.-X., Gao S., Pan Y.-Z., Yu C., Sun C.-Y. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol. Med. Rep. 2014;10:995–1002. doi: 10.3892/mmr.2014.2271. [DOI] [PubMed] [Google Scholar]
  • 126.Ju B.-L., Chen Y.-B., Zhang W.-Y., Yu C.-H., Zhu D.-Q., Jin J. miR-145 regulates chemoresistance in hepatocellular carcinoma via epithelial mesenchymal transition. Cell. Mol. Biol. Noisy. 2015;61:12–16. [PubMed] [Google Scholar]
  • 127.Shi L., Wu L., Chen Z., Yang J., Chen X., Yu F., Zheng F., Lin X. MiR-141 Activates Nrf2-Dependent Antioxidant Pathway via Down-Regulating the Expression of Keap1 Conferring the Resistance of Hepatocellular Carcinoma Cells to 5-Fluorouracil. Cell. Physiol. Biochem. 2015;35:2333–2348. doi: 10.1159/000374036. [DOI] [PubMed] [Google Scholar]
  • 128.Kishikawa T., Otsuka M., Tan P.S., Ohno M., Sun X., Yoshikawa T., Shibata C., Takata A., Kojima K., Takehana K., et al. Decreased miR122 in hepatocellular carcinoma leads to chemoresistance with increased arginine. Oncotarget. 2015;6:8339–8352. doi: 10.18632/oncotarget.3234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Shi L., Chen Z.-G., Wu L.-L., Zheng J.-J., Yang J.-R., Chen X.-F., Chen Z.-Q., Liu C.-L., Chi S.-Y., Zheng J.-Y., et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac. J. Cancer Prev. 2014;15:10439–10444. doi: 10.7314/APJCP.2014.15.23.10439. [DOI] [PubMed] [Google Scholar]
  • 130.Qin J., Luo M., Qian H., Chen W. Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene. 2014;538:342–347. doi: 10.1016/j.gene.2013.12.043. [DOI] [PubMed] [Google Scholar]
  • 131.Wang L., Wang Y.M., Xu S., Wang W.G., Chen Y., Mao J.Y., Tian B.L. MicroRNA-215 is upregulated by treatment with Adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues. Mol. Med. Rep. 2015;12:5274–5280. doi: 10.3892/mmr.2015.4012. [DOI] [PubMed] [Google Scholar]
  • 132.Ho T.-T., He X., Mo Y.-Y., Beck W.T. Transient resistance to DNA damaging agents is associated with expression of microRNAs-135b and -196b in human leukemia cell lines. Int. J. Biochem. Mol. Biol. 2016;7:27–47. [PMC free article] [PubMed] [Google Scholar]
  • 133.Weng H., Huang H., Dong B., Zhao P., Zhou H., Qu L. Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S. Cancer Res. 2014;74:4409–4419. doi: 10.1158/0008-5472.CAN-13-1748. [DOI] [PubMed] [Google Scholar]
  • 134.Seca H., Lima R.T., Lopes-Rodrigues V., Guimaraes J.E., Almeida G.M., Vasconcelos M.H. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr. Drug Targets. 2013;14:1135–1143. doi: 10.2174/13894501113149990185. [DOI] [PubMed] [Google Scholar]
  • 135.Yan Z.-X., Zheng Z., Xue W., Zhao M.-Z., Fei X.-C., Wu L.-L., Huang L.-M., Leboeuf C., Janin A., Wang L., et al. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance. BioMed Res. Int. 2015;2015:197241. doi: 10.1155/2015/197241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Zhao L., Li Y., Song X., Zhou H., Li N., Miao Y., Jia L. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget. 2016;7:60074–60086. doi: 10.18632/oncotarget.11054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Chen Y., Jacamo R., Konopleva M., Garzon R., Croce C., Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J. Clin. Investig. 2013;123:2395–2407. doi: 10.1172/JCI66553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Zhan M., Qu Q., Wang G., Zhou H. Let-7c sensitizes acquired cisplatin-resistant A549 cells by targeting ABCC2 and Bcl-XL. Die Pharm. 2013;68:955–961. [PubMed] [Google Scholar]
  • 139.Li W., Wang W., Ding M., Zheng X., Ma S., Wang X. MiR-1244 sensitizes the resistance of non-small cell lung cancer A549 cell to cisplatin. Cancer Cell Int. 2016;16:30. doi: 10.1186/s12935-016-0305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Wu L., Pu X., Wang Q., Cao J., Xu F., Xu L.I., Li K. miR-96 induces cisplatin chemoresistance in non-small cell lung cancer cells by downregulating SAMD9. Oncol. Lett. 2016;11:945–952. doi: 10.3892/ol.2015.4000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Zhang Z., Zhang L., Yin Z.-Y., Fan X.-L., Hu B., Wang L.-Q., Zhang D. miR-107 regulates cisplatin chemosensitivity of A549 non small cell lung cancer cell line by targeting cyclin dependent kinase 8. Int. J. Clin. Exp. Pathol. 2014;7:7236–7241. [PMC free article] [PubMed] [Google Scholar]
  • 142.Chen X., Jiang Y., Huang Z., Li D., Chen X., Cao M., Meng Q., Pang H., Sun L., Zhao Y., et al. miRNA-378 reverses chemoresistance to cisplatin in lung adenocarcinoma cells by targeting secreted clusterin. Sci. Rep. 2016;6:19455. doi: 10.1038/srep19455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Zhang F., Li Y., Wu H., Qi K., You J., Li X., Zu L., Pan Z., Wang Y., Li Y., et al. MiR-192 confers cisplatin resistance by targeting Bim in lung cancer. Chin. J. Lung Cancer. 2014;17:384–390. doi: 10.3779/j.issn.1009-3419.2014.05.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Lei L., Huang Y., Gong W. miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN. Oncol. Rep. 2013;30:2897–2902. doi: 10.3892/or.2013.2755. [DOI] [PubMed] [Google Scholar]
  • 145.Yang Z., Fang S., Di Y., Ying W., Tan Y., Gu W. Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS ONE. 2015;10:e0121547. doi: 10.1371/journal.pone.0121547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Pan B., Chen Y., Song H., Xu Y., Wang R., Chen L. Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A. Oncotarget. 2015;6:317–331. doi: 10.18632/oncotarget.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Zheng D., Dai Y., Wang S., Xing X. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int. J. Clin. Exp. Pathol. 2015;8:10072–10081. [PMC free article] [PubMed] [Google Scholar]
  • 148.Li J., Wang Y., Song Y., Fu Z., Yu W. miR-27a regulates cisplatin resistance and metastasis by targeting RKIP in human lung adenocarcinoma cells. Mol. Cancer. 2014;13:193. doi: 10.1186/1476-4598-13-193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Xu X., Wells A., Padilla M.T., Kato K., Kim K.C., Lin Y. A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis. 2014;35:2457–2466. doi: 10.1093/carcin/bgu159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Xiao F., Bai Y., Chen Z., Li Y., Luo L., Huang J., Yang J., Liao H., Guo L. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur. J. Cancer. 2014;50:1541–1554. doi: 10.1016/j.ejca.2014.01.024. [DOI] [PubMed] [Google Scholar]
  • 151.Wang Q., Chen W., Bai L., Chen W., Padilla M.T., Lin A.S., Shi S., Wang X., Lin Y. Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J. Biol. Chem. 2014;289:5654–5663. doi: 10.1074/jbc.M113.526152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Ning F., Wang F., Li M., Yu Z.-S., Hao Y., Chen S. MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4. Diagn. Pathol. 2014;9:143. doi: 10.1186/1746-1596-9-143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Huang J.-Y., Cui S.-Y., Chen Y.-T., Song H.-Z., Huang G.-C., Feng B., Sun M., De W., Wang R., Chen L.-B. MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS ONE. 2013;8:e72615. doi: 10.1371/journal.pone.0072615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Wang H., Zhu L.-J., Yang Y.-C., Wang Z.-X., Wang R. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G₁/S transition and apoptosis by targeting p21(WAF1/CIP1) Br. J. Cancer. 2014;111:339–354. doi: 10.1038/bjc.2014.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Chen D., Huang J., Zhang K., Pan B., Chen J., De W., Wang R., Chen L. MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur. J. Cancer Oxf. Engl. 1990. 2014;50:3050–3067. doi: 10.1016/j.ejca.2014.09.008. [DOI] [PubMed] [Google Scholar]
  • 156.Zhao Z., Zhang L., Yao Q., Tao Z. miR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells. Cancer Gene Ther. 2015;22:108–114. doi: 10.1038/cgt.2014.73. [DOI] [PubMed] [Google Scholar]
  • 157.Sui C., Meng F., Li Y., Jiang Y. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J. Transl. Med. 2015;13:132. doi: 10.1186/s12967-015-0488-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Zarogoulidis P., Petanidis S., Kioseoglou E., Domvri K., Anestakis D., Zarogoulidis K. MiR-205 and miR-218 expression is associated with carboplatin chemoresistance and regulation of apoptosis via Mcl-1 and Survivin in lung cancer cells. Cell. Signal. 2015;27:1576–1588. doi: 10.1016/j.cellsig.2015.04.009. [DOI] [PubMed] [Google Scholar]
  • 159.Liang N., Zhou X., Zhao M., Zhao D., Zhu Z., Li S., Yang H. Down-regulation of microRNA-26b modulates non-small cell lung cancer cells chemoresistance and migration through the association of PTEN. Acta Biochim. Biophys. Sin. 2015;47:530–538. doi: 10.1093/abbs/gmv046. [DOI] [PubMed] [Google Scholar]
  • 160.Cao J., He Y., Liu H.-Q., Wang S.-B., Zhao B.-C., Cheng Y.-S. MicroRNA 192 regulates chemo-resistance of lung adenocarcinoma for gemcitabine and cisplatin combined therapy by targeting Bcl-2. Int. J. Clin. Exp. Med. 2015;8:12397–12403. [PMC free article] [PubMed] [Google Scholar]
  • 161.Fujita Y., Yagishita S., Hagiwara K., Yoshioka Y., Kosaka N., Takeshita F., Fujiwara T., Tsuta K., Nokihara H., Tamura T., et al. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol. Ther. J. Am. Soc. Gene Ther. 2015;23:717–727. doi: 10.1038/mt.2015.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Liu H., Wu X., Huang J., Peng J., Guo L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int. J. Exp. Pathol. 2015;96:240–247. doi: 10.1111/iep.12131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Wang Q., Shi S., He W., Padilla M.T., Zhang L., Wang X., Zhang B., Lin Y. Retaining MKP1 expression and attenuating JNK-mediated apoptosis by RIP1 for cisplatin resistance through miR-940 inhibition. Oncotarget. 2014;5:1304–1314. doi: 10.18632/oncotarget.1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Pan B., Feng B., Chen Y., Huang G., Wang R., Chen L., Song H. MiR-200b regulates autophagy associated with chemoresistance in human lung adenocarcinoma. Oncotarget. 2015;6:32805–32820. doi: 10.18632/oncotarget.5352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Shan W., Zhang X., Li M., Deng F., Zhang J. Over expression of miR-200c suppresses invasion and restores methotrexate sensitivity in lung cancer A549 cells. Gene. 2016;593:265–271. doi: 10.1016/j.gene.2016.07.038. [DOI] [PubMed] [Google Scholar]
  • 166.Bai Y., Sun Y., Peng J., Liao H., Gao H., Guo Y., Guo L. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget. 2014;5:7760–7775. doi: 10.18632/oncotarget.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Al-Harbi S., Choudhary G.S., Ebron J.S., Hill B.T., Vivekanathan N., Ting A.H., Radivoyevitch T., Smith M.R., Shukla G.C., Almasan A. miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies. Mol. Cancer. 2015;14:185. doi: 10.1186/s12943-015-0460-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Yuan W.X., Gui Y.X., Na W.N., Chao J., Yang X. Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients. Oncol. Lett. 2016;11:423–432. doi: 10.3892/ol.2015.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Yang G.-D., Huang T.-J., Peng L.-X., Yang C.-F., Liu R.-Y., Huang H.-B., Chu Q.-Q., Yang H.-J., Huang J.-L., Zhu Z.-Y., et al. Epstein-Barr Virus_Encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced Apoptosis by suppressing PDCD4 and Fas-L. PLoS ONE. 2013;8:e78355. doi: 10.1371/journal.pone.0078355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Peng X., Cao P., He D., Han S., Zhou J., Tan G., Li W., Yu F., Yu J., Li Z., et al. MiR-634 sensitizes nasopharyngeal carcinoma cells to paclitaxel and inhibits cell growth both in vitro and in vivo. Int. J. Clin. Exp. Pathol. 2014;7:6784–6791. [PMC free article] [PubMed] [Google Scholar]
  • 171.Phatak P., Byrnes K.A., Mansour D., Liu L., Cao S., Li R., Rao J.N., Turner D.J., Wang J.-Y., Donahue J.M. Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 2016;35:2087–2097. doi: 10.1038/onc.2015.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Komatsu S., Ichikawa D., Kawaguchi T., Miyamae M., Okajima W., Ohashi T., Imamura T., Kiuchi J., Konishi H., Shiozaki A., et al. Circulating miR-21 as an independent predictive biomarker for chemoresistance in esophageal squamous cell carcinoma. Am. J. Cancer Res. 2016;6:1511–1523. [PMC free article] [PubMed] [Google Scholar]
  • 173.Meng F., Qian L., Lv L., Ding B., Zhou G., Cheng X., Niu S., Liang Y. miR-193a-3p regulation of chemoradiation resistance in oesophageal cancer cells via the PSEN1 gene. Gene. 2016;579:139–145. doi: 10.1016/j.gene.2015.12.060. [DOI] [PubMed] [Google Scholar]
  • 174.Tanaka K., Miyata H., Sugimura K., Fukuda S., Kanemura T., Yamashita K., Miyazaki Y., Takahashi T., Kurokawa Y., Yamasaki M., et al. miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 2015;36:894–903. doi: 10.1093/carcin/bgv067. [DOI] [PubMed] [Google Scholar]
  • 175.Wang Y., Zhao Y., Herbst A., Kalinski T., Qin J., Wang X., Jiang Z., Benedix F., Franke S., Wartman T., et al. miR-221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Ann. Surg. 2016;264:1. doi: 10.1097/SLA.0000000000001928. [DOI] [PubMed] [Google Scholar]
  • 176.Liu M., Wang J., Huang H., Hou J., Zhang B., Wang A. miR-181a-Twist1 pathway in the chemoresistance of tongue squamous cell carcinoma. Biochem. Biophys. Res. Commun. 2013;441:364–370. doi: 10.1016/j.bbrc.2013.10.051. [DOI] [PubMed] [Google Scholar]
  • 177.Peng F., Zhang H., Du Y., Tan P. miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through Twist. Oncol. Rep. 2015;33:942–950. doi: 10.3892/or.2014.3664. [DOI] [PubMed] [Google Scholar]
  • 178.Zhou J., Wu S., Chen Y., Zhao J., Zhang K., Wang J., Chen S. microRNA-143 is associated with the survival of ALDH1+CD133+ osteosarcoma cells and the chemoresistance of osteosarcoma. Exp. Biol. Med. 2015;240:867–875. doi: 10.1177/1535370214563893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Chang Z., Huo L., Li K., Wu Y., Hu Z. Blocked autophagy by miR-101 enhances osteosarcoma cell chemosensitivity in vitro. Scientific World J. 2014;2014:794756. doi: 10.1155/2014/794756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Di Fiore R., Drago-Ferrante R., Pentimalli F., Di Marzo D., Forte I.M., D’Anneo A., Carlisi D., De Blasio A., Giuliano M., Tesoriere G., et al. MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells. Int. J. Oncol. 2014;45:2013–2023. doi: 10.3892/ijo.2014.2618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Zhou Y., Huang Z., Wu S., Zang X., Liu M., Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J. Exp. Clin. Cancer Res. 2014;33:12. doi: 10.1186/1756-9966-33-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Xu M., Jin H., Xu C.-X., Bi W.-Z., Wang Y. MiR-34c inhibits osteosarcoma metastasis and chemoresistance. Med. Oncol. Northwood Lond. Engl. 2014;31:972. doi: 10.1007/s12032-014-0972-x. [DOI] [PubMed] [Google Scholar]
  • 183.Zhang Y., Duan G., Feng S. MicroRNA-301a modulates doxorubicin resistance in osteosarcoma cells by targeting AMP-activated protein kinase alpha 1. Biochem. Biophys. Res. Commun. 2015;459:367–373. doi: 10.1016/j.bbrc.2015.02.101. [DOI] [PubMed] [Google Scholar]
  • 184.Li X., Wang S., Chen Y., Liu G., Yang X. miR-22 targets the 3’ UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy. Tumour Biol. 2014;35:6021–6028. doi: 10.1007/s13277-014-1797-0. [DOI] [PubMed] [Google Scholar]
  • 185.Xu M., Jin H., Xu C.-X., Sun B., Mao Z., Bi W.-Z., Wang Y. miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma. Oncotarget. 2014;5:9472–9483. doi: 10.18632/oncotarget.2418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Jacques C., Calleja L. R., Baud’huin M., Quillard T., Heymann D., Lamoureux F., Ory B. miRNA-193a-5p repression of p73 controls Cisplatin chemoresistance in primary bone tumors. Oncotarget. 2016 doi: 10.18632/oncotarget.10950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Zhao H., Liu S., Wang G., Wu X., Ding Y., Guo G., Jiang J., Cui S. Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol. Rep. 2015;33:591–598. doi: 10.3892/or.2014.3640. [DOI] [PubMed] [Google Scholar]
  • 188.Sestito R., Cianfrocca R., Rosanò L., Tocci P., Semprucci E., Di Castro V., Caprara V., Ferrandina G., Sacconi A., Blandino G., et al. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget. 2016;7:4009–4023. doi: 10.18632/oncotarget.6546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Zhan Y., Xiang F., Wu R., Xu J., Ni Z., Jiang J., Kang X. MiRNA-149 modulates chemosensitivity of ovarian cancer A2780 cells to paclitaxel by targeting MyD88. J. Ovarian Res. 2015;8:48. doi: 10.1186/s13048-015-0178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Li X., Pan Q., Wan X., Mao Y., Lu W., Xie X., Cheng X. Methylation-associated Has-miR-9 deregulation in paclitaxel- resistant epithelial ovarian carcinoma. BMC Cancer. 2015;15:509. doi: 10.1186/s12885-015-1509-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Pink R.C., Samuel P., Massa D., Caley D.P., Brooks S.A., Carter D.R.F. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol. Oncol. 2015;137:143–151. doi: 10.1016/j.ygyno.2014.12.042. [DOI] [PubMed] [Google Scholar]
  • 192.Samuel P., Pink R.C., Caley D.P., Currie J.M.S., Brooks S.A., Carter D.R.F. Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumour Biol. 2016;37:2565–2573. doi: 10.1007/s13277-015-4081-z. [DOI] [PubMed] [Google Scholar]
  • 193.Hassan M.K., Watari H., Mitamura T., Mohamed Z., El-Khamisy S.F., Ohba Y., Sakuragi N. P18/Stathmin1 is regulated by miR-31 in ovarian cancer in response to taxane. Oncoscience. 2015;2:294–308. doi: 10.18632/oncoscience.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Sugio A., Iwasaki M., Habata S., Mariya T., Suzuki M., Osogami H., Tamate M., Tanaka R., Saito T. BAG3 upregulates Mcl-1 through downregulation of miR-29b to induce anticancer drug resistance in ovarian cancer. Gynecol. Oncol. 2014;134:615–623. doi: 10.1016/j.ygyno.2014.06.024. [DOI] [PubMed] [Google Scholar]
  • 195.Liu N., Zeng J., Zhang X., Yang Q., Liao D., Chen G., Wang Y. Involvement of miR-200a in chemosensitivity regulation of ovarian cancer. Zhonghua Yi Xue Za Zhi. 2014;94:2148–2151. [PubMed] [Google Scholar]
  • 196.Liu G., Yang D., Rupaimoole R., Pecot C.V., Sun Y., Mangala L.S., Li X., Ji P., Cogdell D., Hu L., et al. Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Weiner-Gorzel K., Dempsey E., Milewska M., McGoldrick A., Toh V., Walsh A., Lindsay S., Gubbins L., Cannon A., Sharpe D., et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 2015;4:745–758. doi: 10.1002/cam4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Zhu X., Shen H., Yin X., Long L., Xie C., Liu Y., Hui L., Lin X., Fang Y., Cao Y., et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene. 2016;35:323–332. doi: 10.1038/onc.2015.84. [DOI] [PubMed] [Google Scholar]
  • 199.Zhou Y., Wang M., Wu J., Jie Z., Chang S., Shuang T. The clinicopathological significance of miR-1307 in chemotherapy resistant epithelial ovarian cancer. J. Ovarian Res. 2015;8:23. doi: 10.1186/s13048-015-0143-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Zhao H., Bi T., Qu Z., Jiang J., Cui S., Wang Y. Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol. Rep. 2014;32:1003–1012. doi: 10.3892/or.2014.3311. [DOI] [PubMed] [Google Scholar]
  • 201.Li N., Yang L., Wang H., Yi T., Jia X., Chen C., Xu P. MiR-130a and MiR-374a Function as Novel Regulators of Cisplatin Resistance in Human Ovarian Cancer A2780 Cells. PLoS ONE. 2015;10:e0128886. doi: 10.1371/journal.pone.0128886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Rao Y., Shi H., Ji M., Chen C. MiR-106a targets Mcl-1 to suppress cisplatin resistance of ovarian cancer A2780 cells. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013;33:567–572. doi: 10.1007/s11596-013-1160-5. [DOI] [PubMed] [Google Scholar]
  • 203.Huh J.H., Kim T.H., Kim K., Song J.-A., Jung Y.J., Jeong J.-Y., Lee M.J., Kim Y.K., Lee D.H., An H.J. Dysregulation of miR-106a and miR-591 confers paclitaxel resistance to ovarian cancer. Br. J. Cancer. 2013;109:452–461. doi: 10.1038/bjc.2013.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Zhao H., Yu X., Ding Y., Zhao J., Wang G., Wu X., Jiang J., Peng C., Guo G.Z., Cui S. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget. 2016;7:53254–53268. doi: 10.18632/oncotarget.10736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Au Yeung C.L., Co N.-N., Tsuruga T., Yeung T.-L., Kwan S.-Y., Leung C.S., Li Y., Lu E.S., Kwan K., Wong K.-K., et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 2016;7:11150. doi: 10.1038/ncomms11150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Liu M.X., Siu M.K.Y., Liu S.S., Yam J.W.P., Ngan H.Y.S., Chan D.W. Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 2014;5:944–958. doi: 10.18632/oncotarget.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Zhu X., Li Y., Xie C., Yin X., Liu Y., Cao Y., Fang Y., Lin X., Xu Y., Xu W., et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int. J. Cancer. 2014;135:1286–1296. doi: 10.1002/ijc.28774. [DOI] [PubMed] [Google Scholar]
  • 208.Cai J., Yang C., Yang Q., Ding H., Jia J., Guo J., Wang J., Wang Z. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis. 2013;2:e75. doi: 10.1038/oncsis.2013.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.He J., Yu J.-J., Xu Q., Wang L., Zheng J.Z., Liu L.-Z., Jiang B.-H. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy. 2015;11:373–384. doi: 10.1080/15548627.2015.1009781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Li B., Chen H., Wu N., Zhang W.-J., Shang L.-X. Deregulation of miR-128 in ovarian cancer promotes cisplatin resistance. Int. J. Gynecol. Cancer. 2014;24:1381–1388. doi: 10.1097/IGC.0000000000000252. [DOI] [PubMed] [Google Scholar]
  • 211.Vecchione A., Belletti B., Lovat F., Volinia S., Chiappetta G., Giglio S., Sonego M., Cirombella R., Onesti E.C., Pellegrini P., et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc. Natl. Acad. Sci. USA. 2013;110:9845–9850. doi: 10.1073/pnas.1305472110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Park Y.T., Jeong J.-Y., Lee M.-J., Kim K.-I., Kim T.-H., Kwon Y., Lee C., Kim O.J., An H.-J. MicroRNAs overexpressed in ovarian ALDH1-positive cells are associated with chemoresistance. J. Ovarian Res. 2013;6:18. doi: 10.1186/1757-2215-6-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Frederick P.J., Green H.N., Huang J.S., Egger M.E., Frieboes H.B., Grizzle W.E., McNally L.R. Chemoresistance in ovarian cancer linked to expression of microRNAs. Biotech. Histochem. 2013;88:403–409. doi: 10.3109/10520295.2013.788736. [DOI] [PubMed] [Google Scholar]
  • 214.Wang Y.-Q., Guo R.-D., Guo R.-M., Sheng W., Yin L.-R. MicroRNA-182 promotes cell growth, invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas. J. Cell. Biochem. 2013;114:1464–1473. doi: 10.1002/jcb.24488. [DOI] [PubMed] [Google Scholar]
  • 215.Ma C., Huang T., Ding Y.-C., Yu W., Wang Q., Meng B., Luo S.-X. MicroRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 2015;8:6533–6539. [PMC free article] [PubMed] [Google Scholar]
  • 216.Liang C., Wang Z., Li Y.-Y., Yu B.-H., Zhang F., Li H.-Y. miR-33a suppresses the nuclear translocation of β-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumour Biol. 2015;36:9395–9403. doi: 10.1007/s13277-015-3679-5. [DOI] [PubMed] [Google Scholar]
  • 217.Cioffi M., Trabulo S.M., Sanchez-Ripoll Y., Miranda-Lorenzo I., Lonardo E., Dorado J., Reis Vieira C., Ramirez J.C., Hidalgo M., Aicher A., et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015;64:1936–1948. doi: 10.1136/gutjnl-2014-308470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Zhao L., Zou D., Wei X., Wang L., Zhang Y., Liu S., Si Y., Zhao H., Wang F., Yu J., et al. MiRNA-221-3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumour Biol. 2016;37:16053–16063. doi: 10.1007/s13277-016-5445-8. [DOI] [PubMed] [Google Scholar]
  • 219.Hasegawa S., Eguchi H., Nagano H., Konno M., Tomimaru Y., Wada H., Hama N., Kawamoto K., Kobayashi S., Nishida N., et al. MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer. 2014;111:1572–1580. doi: 10.1038/bjc.2014.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Takiuchi D., Eguchi H., Nagano H., Iwagami Y., Tomimaru Y., Wada H., Kawamoto K., Kobayashi S., Marubashi S., Tanemura M., et al. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology. 2013;13:517–523. doi: 10.1016/j.pan.2013.06.007. [DOI] [PubMed] [Google Scholar]
  • 221.Liu Y., Li X., Zhu S., Zhang J., Yang M., Qin Q., Deng S., Wang B., Tian K., Liu L., et al. Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 2015;22:729–738. doi: 10.1038/gt.2015.39. [DOI] [PubMed] [Google Scholar]
  • 222.Fan P., Liu L., Yin Y., Zhao Z., Zhang Y., Amponsah P.S., Xiao X., Bauer N., Abukiwan A., Nwaeburu C.C., et al. MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Lett. 2016;373:130–137. doi: 10.1016/j.canlet.2016.01.038. [DOI] [PubMed] [Google Scholar]
  • 223.Dhayat S.A., Abdeen B., Köhler G., Senninger N., Haier J., Mardin W.A. MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin. Epigenetics. 2015;7:132. doi: 10.1186/s13148-015-0166-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Dhayat S.A., Mardin W.A., Seggewiß J., Ströse A.J., Matuszcak C., Hummel R., Senninger N., Mees S.T., Haier J. MicroRNA Profiling Implies New Markers of Gemcitabine Chemoresistance in Mutant p53 Pancreatic Ductal Adenocarcinoma. PLoS ONE. 2015;10:e0143755. doi: 10.1371/journal.pone.0143755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Bhutia Y.D., Hung S.W., Krentz M., Patel D., Lovin D., Manoharan R., Thomson J.M., Govindarajan R. Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: Role of LIN-28 and SET oncoprotein. PLoS ONE. 2013;8:e53436. doi: 10.1371/journal.pone.0053436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Singh S., Chitkara D., Kumar V., Behrman S.W., Mahato R.I. miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett. 2013;334:211–220. doi: 10.1016/j.canlet.2012.10.008. [DOI] [PubMed] [Google Scholar]
  • 227.Li J., Wu H., Li W., Yin L., Guo S., Xu X., Ouyang Y., Zhao Z., Liu S., Tian Y., et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene. 2016;35:5501–5514. doi: 10.1038/onc.2016.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Li J., Yang X., Guan H., Mizokami A., Keller E.T., Xu X., Liu X., Tan J., Hu L., Lu Y., et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int. J. Oncol. 2016;49:838–846. doi: 10.3892/ijo.2016.3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Kim E.-A., Kim S.-W., Nam J., Sung E.-G., Song I.-H., Kim J.-Y., Kwon T.K., Lee T.-J. Inhibition of c-FLIPL expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget. 2016;7:31832–31846. doi: 10.18632/oncotarget.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Peng J., Mo R., Ma J., Fan J. let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World J. Surg. Oncol. 2015;13:175. doi: 10.1186/s12957-015-0596-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Chang I., Mitsui Y., Fukuhara S., Gill A., Wong D.K., Yamamura S., Shahryari V., Tabatabai Z.L., Dahiya R., Shin D.M., et al. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget. 2015;6:7774–7787. doi: 10.18632/oncotarget.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Ayers D., Mestdagh P., Van Maerken T., Vandesompele J. Identification of miRNAs contributing to neuroblastoma chemoresistance. Comput. Struct. Biotechnol. J. 2015;13:307–319. doi: 10.1016/j.csbj.2015.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. [DOI] [PubMed] [Google Scholar]
  • 234.Volders P.-J., Helsens K., Wang X., Menten B., Martens L., Gevaert K., Vandesompele J., Mestdagh P. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41:D246–D251. doi: 10.1093/nar/gks915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Volders P.J., Verheggen K., Menschaert G., Vandepoele K., Martens L., Vandesompele J., Mestdagh P. An update on LNCipedia: A database for annotated human lncRNA sequences. Nucleic Acids Res. 2015;43:4363–4364. doi: 10.1093/nar/gkv295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Fang S., Gao H., Tong Y., Yang J., Tang R., Niu Y., Li M., Guo L. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab. Investig. 2016;96:60–68. doi: 10.1038/labinvest.2015.123. [DOI] [PubMed] [Google Scholar]
  • 237.Liu Z., Sun M., Lu K., Liu J., Zhang M., Wu W., De W., Wang Z., Wang R. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS ONE. 2013;8:e77293. doi: 10.1371/journal.pone.0077293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Özeş A.R., Miller D.F., Özeş O.N., Fang F., Liu Y., Matei D., Huang T., Nephew K.P. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 2016;35:5350–5361. doi: 10.1038/onc.2016.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Wang Y., Zhang D., Wu K., Zhao Q., Nie Y., Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol. Cell. Biol. 2014;34:3182–3193. doi: 10.1128/MCB.01580-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Dong S., Qu X., Li W., Zhong X., Li P., Yang S., Chen X., Shao M., Zhang L. The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J. Hematol. Oncol. 2015;8:43. doi: 10.1186/s13045-015-0140-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Cheng N., Cai W., Ren S., Li X., Wang Q., Pan H., Zhao M., Li J., Zhang Y., Zhao C., et al. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget. 2015;6:23582–23593. doi: 10.18632/oncotarget.4361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Pan J., Li X., Wu W., Xue M., Hou H., Zhai W., Chen W. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett. 2016;382:64–76. doi: 10.1016/j.canlet.2016.08.015. [DOI] [PubMed] [Google Scholar]
  • 243.Fan Y., Shen B., Tan M., Mu X., Qin Y., Zhang F., Liu Y. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 2014;281:1750–1758. doi: 10.1111/febs.12737. [DOI] [PubMed] [Google Scholar]
  • 244.He D.-X., Zhang G.-Y., Gu X.-T., Mao A.-Q., Lu C.-X., Jin J., Liu D.-Q., Ma X. Genome-wide profiling of long non-coding RNA expression patterns in anthracycline-resistant breast cancer cells. Int. J. Oncol. 2016;49:1695–1703. doi: 10.3892/ijo.2016.3665. [DOI] [PubMed] [Google Scholar]
  • 245.Jiang M., Huang O., Xie Z., Wu S., Zhang X., Shen A., Liu H., Chen X., Wu J., Lou Y., et al. A novel long non-coding RNA-ARA: Adriamycin resistance-associated. Biochem. Pharmacol. 2014;87:254–283. doi: 10.1016/j.bcp.2013.10.020. [DOI] [PubMed] [Google Scholar]
  • 246.Shi S.-J., Wang L.-J., Yu B., Li Y.-H., Jin Y., Bai X.-Z. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6:11652–11663. doi: 10.18632/oncotarget.3457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Li W., Zhai L., Wang H., Liu C., Zhang J., Chen W., Wei Q. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget. 2016;7:27778–27786. doi: 10.18632/oncotarget.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Schouten P.C., Vollebergh M.A., Opdam M., Jonkers M., Loden M., Wesseling J., Hauptmann M., Linn S.C. High XIST and Low 53BP1 Expression Predict Poor Outcome after High-Dose Alkylating Chemotherapy in Patients with a BRCA1-like Breast Cancer. Mol. Cancer Ther. 2016;15:190–198. doi: 10.1158/1535-7163.MCT-15-0470. [DOI] [PubMed] [Google Scholar]
  • 249.Redis R.S., Sieuwerts A.M., Look M.P., Tudoran O., Ivan C., Spizzo R., Zhang X., de Weerd V., Shimizu M., Ling H., et al. CCAT2, a novel long non-coding RNA in breast cancer: Expression study and clinical correlations. Oncotarget. 2013;4:1748–1762. doi: 10.18632/oncotarget.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Lee H., Kim C., Ku J.-L., Kim W., Yoon S.K., Kuh H.-J., Lee J.-H., Nam S. W., Lee E.K. A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol. Cells. 2014;37:540–546. doi: 10.14348/molcells.2014.0151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Yue B., Cai D., Liu C., Fang C., Yan D. Linc00152 Functions as a Competing Endogenous RNA to Confer Oxaliplatin Resistance and Holds Prognostic Values in Colon Cancer. Mol. Ther. J. Am. Soc. Gene Ther. 2016;24:2064–2077. doi: 10.1038/mt.2016.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Li Y., Huang S., Li Y., Zhang W., He K., Zhao M., Lin H., Li D., Zhang H., Zheng Z., et al. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol. 2016;37:14205–14215. doi: 10.1007/s13277-016-5254-0. [DOI] [PubMed] [Google Scholar]
  • 253.Hang Q., Sun R., Jiang C., Li Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anticancer. Drugs. 2015;26:632–640. doi: 10.1097/CAD.0000000000000227. [DOI] [PubMed] [Google Scholar]
  • 254.Zhang X., Bu P., Liu L., Zhang X., Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem. Biophys. Res. Commun. 2015;462:227–232. doi: 10.1016/j.bbrc.2015.04.121. [DOI] [PubMed] [Google Scholar]
  • 255.Takahashi K., Yan I.K., Kogure T., Haga H., Patel T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 2014;4:458–467. doi: 10.1016/j.fob.2014.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Chen J., Zhang K., Song H., Wang R., Chu X., Chen L. Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells. Oncotarget. 2016;7:62474–62489. doi: 10.18632/oncotarget.11518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Yang Y., Li H., Hou S., Hu B., Liu J., Wang J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS ONE. 2013;8:e65309. doi: 10.1371/journal.pone.0065309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Liu J., Wan L., Lu K., Sun M., Pan X., Zhang P., Lu B., Liu G., Wang Z. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS ONE. 2015;10:e0114586. doi: 10.1371/journal.pone.0114586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Mourtada-Maarabouni M., Williams G.T. Role of GAS5 noncoding RNA in mediating the effects of rapamycin and its analogues on mantle cell lymphoma cells. Clin. Lymphoma Myeloma Leuk. 2014;14:468–473. doi: 10.1016/j.clml.2014.02.011. [DOI] [PubMed] [Google Scholar]
  • 260.Ren S., Li G., Liu C., Cai T., Su Z., Wei M., She L., Tian Y., Qiu Y., Zhang X., et al. Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncol. Rep. 2016;36:1861–1867. doi: 10.3892/or.2016.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Li L., Gu M., You B., Shi S., Shan Y., Bao L., You Y. Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma. Cancer Sci. 2016;107:1215–1222. doi: 10.1111/cas.12989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Jiang L., Wang W., Li G., Sun C., Ren Z., Sheng H., Gao H., Wang C., Yu H. High TUG1 expression is associated with chemotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. Cancer Chemother. Pharmacol. 2016;78:333–339. doi: 10.1007/s00280-016-3066-y. [DOI] [PubMed] [Google Scholar]
  • 263.Wang Y., Zhang L., Zheng X., Zhong W., Tian X., Yin B., Tian K., Zhang W. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett. 2016;382:137–146. doi: 10.1016/j.canlet.2016.08.024. [DOI] [PubMed] [Google Scholar]
  • 264.Zhang C.-L., Zhu K.-P., Shen G.-Q., Zhu Z.-S. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma. Tumour Biol. 2016;37:2737–2748. doi: 10.1007/s13277-015-4130-7. [DOI] [PubMed] [Google Scholar]
  • 265.Zhu K.-P., Zhang C.-L., Shen G.-Q., Zhu Z.-S. Long noncoding RNA expression profiles of the doxorubicin-resistant human osteosarcoma cell line MG63/DXR and its parental cell line MG63 as ascertained by microarray analysis. Int. J. Clin. Exp. Pathol. 2015;8:8754–8773. [PMC free article] [PubMed] [Google Scholar]
  • 266.Liu E., Liu Z., Zhou Y., Mi R., Wang D. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int. J. Clin. Exp. Med. 2015;8:20565–20572. [PMC free article] [PubMed] [Google Scholar]
  • 267.Zhang L., Cao X., Zhang L., Zhang X., Sheng H., Tao K. UCA1 overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy. Cancer Chemother. Pharmacol. 2016;77:629–634. doi: 10.1007/s00280-016-2963-4. [DOI] [PubMed] [Google Scholar]
  • 268.Wu D.I., Wang T., Ren C., Liu L., Kong D., Jin X., Li X., Zhang G. Downregulation of BC200 in ovarian cancer contributes to cancer cell proliferation and chemoresistance to carboplatin. Oncol. Lett. 2016;11:1189–1194. doi: 10.3892/ol.2015.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Li Z., Zhao X., Zhou Y., Liu Y., Zhou Q., Ye H., Wang Y., Zeng J., Song Y., Gao W., et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 2015;13:84. doi: 10.1186/s12967-015-0442-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.You L., Chang D., Du H.-Z., Zhao Y.-P. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2011;407:1–6. doi: 10.1016/j.bbrc.2011.02.027. [DOI] [PubMed] [Google Scholar]
  • 271.Jiao F., Hu H., Han T., Yuan C., Wang L., Jin Z., Guo Z., Wang L. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 2015;16:6677–6693. doi: 10.3390/ijms16046677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Yacqub-Usman K., Pickard M.R., Williams G.T. Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate. 2015;75:693–705. doi: 10.1002/pros.22952. [DOI] [PubMed] [Google Scholar]
  • 273.Xu C.-G., Yang M.-F., Ren Y.-Q., Wu C.-H., Wang L.-Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4362–4368. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Genes are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES