Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(7):2471–2475. doi: 10.1073/pnas.87.7.2471

Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors.

M S Dennis 1, W J Henzel 1, R M Pitti 1, M T Lipari 1, M A Napier 1, T A Deisher 1, S Bunting 1, R A Lazarus 1
PMCID: PMC53711  PMID: 2320569

Abstract

The purification, complete amino acid sequence, and biological activity are described for several homologous snake venom proteins that are platelet glycoprotein (GP) IIb-IIIa antagonists and potent inhibitors of platelet aggregation. The primary structures of kistrin (from Agkistrodon rhodostoma), bitan (from Bitis arietans), three isoforms of trigramin (from Trimeresusus gramineus), and an isoform of echistatin (from Echis carinatus) were determined by automated sequence analysis and fast atom bombardment mass spectrometry analysis. Each of the protein in this family, which range from 47 to 83 residues, contains an Arg-Gly-Asp amino acid sequence found in protein ligands that binds to GPIIb-IIIa, a high (17 +/- 1%) cysteine content conserved in the primary sequence, and a homologous N-terminal region absent only in the echistatin isoforms. Each protein directly inhibits the interaction of purified platelet GPIIb-IIIa to immobilized fibrinogen about 100 times more effectively than does the pentapeptide Gly-Arg-Gly-Asp-Ser; IC50 values range from 1.1 to 3.0 nM. The IC50 value for the inhibition of platelet aggregation, using human platelet-rich plasma stimulated with ADP, ranges from 110 to 550 nM for the various proteins, about 1000-fold more potent than Gly-Arg-Gly-Asp-Ser. Kistrin binds reversibly to both resting and ADP-activated human platelets with high affinity (Kd = 10.8 nM and 1.7 nM, respectively) and to purified GPIIb-IIIa with a lower affinity (Kd = approximately 100 nM). Finally, kistrin injected at 1.0 mg/kg into rabbits reversibly inhibits platelet aggregation ex vivo over 30 min without induction of thrombocytopenia. We propose that these proteins are members of a general class of proteins found in the venom of pit vipers that inhibit platelet aggregation by antagonism of the GPIIb-IIIa-fibrinogen interaction and as such serve as potential antithrombotic agents.

Full text

PDF
2471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. S., Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979 Nov;64(5):1393–1401. doi: 10.1172/JCI109597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodary S. C., Napier M. A., McLean J. W. Expression of recombinant platelet glycoprotein IIbIIIa results in a functional fibrinogen-binding complex. J Biol Chem. 1989 Nov 15;264(32):18859–18862. [PubMed] [Google Scholar]
  3. Coller B. S. A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest. 1985 Jul;76(1):101–108. doi: 10.1172/JCI111931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fitzgerald L. A., Leung B., Phillips D. R. A method for purifying the platelet membrane glycoprotein IIb-IIIa complex. Anal Biochem. 1985 Nov 15;151(1):169–177. doi: 10.1016/0003-2697(85)90067-3. [DOI] [PubMed] [Google Scholar]
  5. Gan Z. R., Gould R. J., Jacobs J. W., Friedman P. A., Polokoff M. A. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem. 1988 Dec 25;263(36):19827–19832. [PubMed] [Google Scholar]
  6. Ginsberg M. H., Loftus J. C., Plow E. F. Cytoadhesins, integrins, and platelets. Thromb Haemost. 1988 Feb 25;59(1):1–6. [PubMed] [Google Scholar]
  7. Henzel W. J., Rodriguez H., Watanabe C. Computer analysis of automated Edman degradation and amino acid analysis data. J Chromatogr. 1987 Aug 28;404(1):41–52. doi: 10.1016/s0021-9673(01)86835-7. [DOI] [PubMed] [Google Scholar]
  8. Huang T. F., Holt J. C., Kirby E. P., Niewiarowski S. Trigramin: primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIb/IIIa complex on human platelets. Biochemistry. 1989 Jan 24;28(2):661–666. doi: 10.1021/bi00428a037. [DOI] [PubMed] [Google Scholar]
  9. Huang T. F., Holt J. C., Lukasiewicz H., Niewiarowski S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987 Nov 25;262(33):16157–16163. [PubMed] [Google Scholar]
  10. Huang T. F., Wu Y. J., Ouyang C. Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 1987 Sep 11;925(3):248–257. doi: 10.1016/0304-4165(87)90189-9. [DOI] [PubMed] [Google Scholar]
  11. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  12. Knudsen K. A., Tuszynski G. P., Huang T. F., Niewiarowski S. Trigramin, an RGD-containing peptide from snake venom, inhibits cell-substratum adhesion of human melanoma cells. Exp Cell Res. 1988 Nov;179(1):42–49. doi: 10.1016/0014-4827(88)90346-1. [DOI] [PubMed] [Google Scholar]
  13. Kornalík F. The influence of snake venom enzymes on blood coagulation. Pharmacol Ther. 1985;29(3):353–405. doi: 10.1016/0163-7258(85)90008-7. [DOI] [PubMed] [Google Scholar]
  14. Lipinska I., Lipinski B., Gurewich V. Fibrinogen heterogeneity in human plasma. Electrophoretic demonstration and characterization of two major fibrinogen components. J Lab Clin Med. 1974 Oct;84(4):509–516. [PubMed] [Google Scholar]
  15. Marguerie G. A., Edgington T. S., Plow E. F. Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem. 1980 Jan 10;255(1):154–161. [PubMed] [Google Scholar]
  16. Marguerie G. A., Plow E. F., Edgington T. S. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979 Jun 25;254(12):5357–5363. [PubMed] [Google Scholar]
  17. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  18. Nachman R. L., Leung L. L. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest. 1982 Feb;69(2):263–269. doi: 10.1172/JCI110448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newman P. J., Allen R. W., Kahn R. A., Kunicki T. J. Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3. Blood. 1985 Jan;65(1):227–232. [PubMed] [Google Scholar]
  20. Newman P. J., McEver R. P., Doers M. P., Kunicki T. J. Synergistic action of two murine monoclonal antibodies that inhibit ADP-induced platelet aggregation without blocking fibrinogen binding. Blood. 1987 Feb;69(2):668–676. [PubMed] [Google Scholar]
  21. Ouyang C., Huang T. F. Potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Biochim Biophys Acta. 1983 Jun 9;757(3):332–341. doi: 10.1016/0304-4165(83)90059-4. [DOI] [PubMed] [Google Scholar]
  22. Peerschke E. I. The platelet fibrinogen receptor. Semin Hematol. 1985 Oct;22(4):241–259. [PubMed] [Google Scholar]
  23. Phillips D. R., Charo I. F., Parise L. V., Fitzgerald L. A. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988 Apr;71(4):831–843. [PubMed] [Google Scholar]
  24. Plow E. F., Ginsberg M. H. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. Prog Hemost Thromb. 1989;9:117–156. [PubMed] [Google Scholar]
  25. Pytela R., Pierschbacher M. D., Ginsberg M. H., Plow E. F., Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science. 1986 Mar 28;231(4745):1559–1562. doi: 10.1126/science.2420006. [DOI] [PubMed] [Google Scholar]
  26. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  28. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  29. Vargas J. R., Radomski M., Moncada S. The use of prostacyclin in the separation from plasma and washing of human platelets. Prostaglandins. 1982 Jun;23(6):929–945. doi: 10.1016/0090-6980(82)90135-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES