Abstract
Saposins are small, heat-stable glycoproteins required for the hydrolysis of sphingolipids by specific lysosomal hydrolases. Saposins A, B, C, and D are derived by proteolytic processing from a single precursor protein named prosaposin. Saposin B, previously known as SAP-1 and sulfatide activator, stimulates the hydrolysis of a wide variety of substrates including cerebroside sulfate, GM1 ganglioside, and globotriaosylceramide by arylsulfatase A, acid beta-galactosidase, and alpha-galactosidase, respectively. Human saposin B deficiency, transmitted as an autosomal recessive trait, results in tissue accumulation of cerebroside sulfate and a clinical picture resembling metachromatic leukodystrophy (activator-deficient metachromatic leukodystrophy). We have examined transformed lymphoblasts from the initially reported saposin B-deficient patient and found normal amounts of saposins A, C, and D. After preparing first-strand cDNA from lymphoblast total RNA, we used the polymerase chain reaction to amplify the prosaposin cDNA. The patient's mRNA differed from the normal sequence by only one C----T transition in the 23rd codon of saposin B, resulting in a threonine to isoleucine amino acid substitution. An affected male sibling has the same mutation as the proband and their heterozygous mother carries both the normal and mutant sequences, providing additional evidence that this base change is the disease-causing mutation. This base change results in the replacement of a polar amino acid (threonine) with a nonpolar amino acid (isoleucine) and, more importantly, eliminates the glycosylation signal in this activator protein. One explanation for the deficiency of saposin B in this disease is that the mutation may increase the degradation of saposin B by exposing a potential proteolytic cleavage site (arginine) two amino acids to the amino-terminal side of the glycosylation site when the carbohydrate side chain is absent.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beeley J. G. Location of the carbohydrate groups of ovomucoid. Biochem J. 1976 Nov;159(2):335–345. doi: 10.1042/bj1590335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeley J. G. Peptide chain conformation and the glycosylation of glycoproteins. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1051–1055. doi: 10.1016/0006-291x(77)90962-7. [DOI] [PubMed] [Google Scholar]
- Collard M. W., Griswold M. D. Biosynthesis and molecular cloning of sulfated glycoprotein 2 secreted by rat Sertoli cells. Biochemistry. 1987 Jun 16;26(12):3297–3303. doi: 10.1021/bi00386a008. [DOI] [PubMed] [Google Scholar]
- Fischer G., Jatzkewitz H. The activator of cerebroside sulphatase. Purification from human liver and identification as a protein. Hoppe Seylers Z Physiol Chem. 1975 May;356(5):605–613. doi: 10.1515/bchm2.1975.356.1.605. [DOI] [PubMed] [Google Scholar]
- Fischer G., Jatzkewitz H. The activator of cerebroside-sulphatase. A model of the activation. Biochim Biophys Acta. 1978 Jan 27;528(1):69–76. doi: 10.1016/0005-2760(78)90053-x. [DOI] [PubMed] [Google Scholar]
- Fürst W., Machleidt W., Sandhoff K. The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe Seyler. 1988 May;369(5):317–328. doi: 10.1515/bchm3.1988.369.1.317. [DOI] [PubMed] [Google Scholar]
- Gärtner S., Conzelmann E., Sandhoff K. Activator protein for the degradation of globotriaosylceramide by human alpha-galactosidase. J Biol Chem. 1983 Oct 25;258(20):12378–12385. [PubMed] [Google Scholar]
- Inui K., Emmett M., Wenger D. A. Immunological evidence for deficiency in an activator protein for sulfatide sulfatase in a variant form of metachromatic leukodystrophy. Proc Natl Acad Sci U S A. 1983 May;80(10):3074–3077. doi: 10.1073/pnas.80.10.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kretz K. A., Carson G. S., O'Brien J. S. Direct sequencing from low-melt agarose with Sequenase. Nucleic Acids Res. 1989 Jul 25;17(14):5864–5864. doi: 10.1093/nar/17.14.5864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. C., Kihara H., Serizawa S., Li Y. T., Fluharty A. L., Mayes J. S., Shapiro L. J. Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. Deficiency in urine of patients affected with cerebroside sulfatase activator deficiency and identity with activators for the enzymatic hydrolysis of GM1 ganglioside and globotriaosylceramide. J Biol Chem. 1985 Feb 10;260(3):1867–1871. [PubMed] [Google Scholar]
- Li S. C., Li Y. T. An activator stimulating the enzymic hydrolysis of sphingoglycolipids. J Biol Chem. 1976 Feb 25;251(4):1159–1163. [PubMed] [Google Scholar]
- Li S. C., Sonnino S., Tettamanti G., Li Y. T. Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J Biol Chem. 1988 May 15;263(14):6588–6591. [PubMed] [Google Scholar]
- Li S. C., Wan C. C., Mazzotta M. Y., Li Y. T. Requirement of an activator for the hydrolysis of sphingoglycolipids by glycosidases of human liver. Carbohydr Res. 1974 May;34(1):189–193. doi: 10.1016/s0008-6215(00)80383-3. [DOI] [PubMed] [Google Scholar]
- Mehl E., Jatzkewitz H. Eine Cerebrosidsulfatase aus Schweineniere. Hoppe Seylers Z Physiol Chem. 1964;339(1):260–276. [PubMed] [Google Scholar]
- Morimoto S., Martin B. M., Kishimoto Y., O'Brien J. S. Saposin D: a sphingomyelinase activator. Biochem Biophys Res Commun. 1988 Oct 14;156(1):403–410. doi: 10.1016/s0006-291x(88)80855-6. [DOI] [PubMed] [Google Scholar]
- Morimoto S., Martin B. M., Yamamoto Y., Kretz K. A., O'Brien J. S., Kishimoto Y. Saposin A: second cerebrosidase activator protein. Proc Natl Acad Sci U S A. 1989 May;86(9):3389–3393. doi: 10.1073/pnas.86.9.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano T., Sandhoff K., Stümper J., Christomanou H., Suzuki K. Structure of full-length cDNA coding for sulfatide activator, a Co-beta-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem. 1989 Feb;105(2):152–154. doi: 10.1093/oxfordjournals.jbchem.a122629. [DOI] [PubMed] [Google Scholar]
- O'Brien J. S., Kretz K. A., Dewji N., Wenger D. A., Esch F., Fluharty A. L. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science. 1988 Aug 26;241(4869):1098–1101. doi: 10.1126/science.2842863. [DOI] [PubMed] [Google Scholar]
- Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Sano A., Radin N. S. The carbohydrate moiety of the activator protein for glucosylceramide beta-glucosidase. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1197–1203. doi: 10.1016/0006-291x(88)90267-7. [DOI] [PubMed] [Google Scholar]
- Stevens R. L., Fluharty A. L., Kihara H., Kaback M. M., Shapiro L. J., Marsh B., Sandhoff K., Fischer G. Cerebroside sulfatase activator deficiency induced metachromatic leukodystrophy. Am J Hum Genet. 1981 Nov;33(6):900–906. [PMC free article] [PubMed] [Google Scholar]
- Wenger D. A., DeGala G., Williams C., Taylor H. A., Stevenson R. E., Pruitt J. R., Miller J., Garen P. D., Balentine J. D. Clinical, pathological, and biochemical studies on an infantile case of sulfatide/GM1 activator protein deficiency. Am J Med Genet. 1989 Jun;33(2):255–265. doi: 10.1002/ajmg.1320330223. [DOI] [PubMed] [Google Scholar]
- Wenger D. A., Sattler M., Roth S. A protein activator of galactosylceramide beta-galactosidase. Biochim Biophys Acta. 1982 Sep 14;712(3):639–649. doi: 10.1016/0005-2760(82)90293-4. [DOI] [PubMed] [Google Scholar]