Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(7):2550–2554. doi: 10.1073/pnas.87.7.2550

Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain.

B I Kanner 1, A Bendahan 1
PMCID: PMC53727  PMID: 2108440

Abstract

Electrogenic sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transport in crude synaptosomal membrane vesicles is partly inhibited by saturating levels of either of the substrate analogues cis-3-aminocyclohexanecarboxylic acid (ACHC) or beta-alanine. However, both of them together potently and fully inhibit the process. Transport of beta-alanine, which exhibits an apparent Km of about 44 microM, is also electrogenic and sodium and chloride dependent and competitively inhibited by GABA with a Ki of about 3 microM. This value is very similar to the Km of 2-4 microM found for GABA transport. On the other hand, ACHC does not inhibit beta-alanine transport at all. Upon solubilization of the membrane proteins with cholate and fractionation with ammonium sulfate, a fraction is obtained which upon reconstitution into proteoliposomes exhibits 4- to 10-fold-increased GABA transport. This activity is fully inhibited by low concentrations of ACHC and is not sensitive at all to beta-alanine. GABA transport in this preparation exhibits an apparent Km of about 2.5 microM and it is competitively inhibited by ACHC (Ki approximately 7 microM). These data indicate the presence of two GABA transporter subtypes in the membrane vesicles: the A type, sensitive to ACHC, and the B type, sensitive to beta-alanine.

Full text

PDF
2550

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agullo L., Jimenez B., Aragón C., Giménez C. Beta-alanine transport in synaptic plasma membrane vesicles from rat brain. Efflux, exchange and stoichiometry. Eur J Biochem. 1986 Sep 15;159(3):611–617. doi: 10.1111/j.1432-1033.1986.tb09929.x. [DOI] [PubMed] [Google Scholar]
  2. Bevan S., Chiu S. Y., Gray P. T., Ritchie J. M. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1985 Sep 23;225(1240):299–313. doi: 10.1098/rspb.1985.0063. [DOI] [PubMed] [Google Scholar]
  3. Blaustein M. P., King A. C. Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: experimental observations and theoretical considerations. J Membr Biol. 1976 Dec 28;30(2):153–173. doi: 10.1007/BF01869665. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Fykse E. M., Fonnum F. Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J Neurochem. 1988 Apr;50(4):1237–1242. doi: 10.1111/j.1471-4159.1988.tb10599.x. [DOI] [PubMed] [Google Scholar]
  6. Hell J. W., Maycox P. R., Stadler H., Jahn R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 1988 Oct;7(10):3023–3029. doi: 10.1002/j.1460-2075.1988.tb03166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iversen L. L., Bloom F. E. Studies of the uptake of 3 H-gaba and ( 3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972 Jun 8;41(1):131–143. doi: 10.1016/0006-8993(72)90621-x. [DOI] [PubMed] [Google Scholar]
  8. Johnston T. P., McCaleb G. S., Clayton S. D., Frye J. L., Krauth C. A., Montgomery J. A. Synthesis of analogues of N-(2-chloroethyl)-N'-(trans-4-methylcyclohexyl)-N-nitrosourea for evaluation as anticancer agents. J Med Chem. 1977 Feb;20(2):279–290. doi: 10.1021/jm00212a019. [DOI] [PubMed] [Google Scholar]
  9. Jones G. P., Neal M. J. Selective inhibition of neuronal GABA uptake by cis-1,3-aminocyclohexane carboxylic acid. Nature. 1976 Nov 18;264(5583):281–284. doi: 10.1038/264281a0. [DOI] [PubMed] [Google Scholar]
  10. Kanner B. I. Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry. 1978 Apr 4;17(7):1207–1211. doi: 10.1021/bi00600a011. [DOI] [PubMed] [Google Scholar]
  11. Kanner B. I., Bendahan A., Radian R. Efflux and exchange of gamma-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicles isolated from immature rat brain. Biochim Biophys Acta. 1983 May 26;731(1):54–62. doi: 10.1016/0005-2736(83)90397-8. [DOI] [PubMed] [Google Scholar]
  12. Kanner B. I. Bioenergetics of neurotransmitter transport. Biochim Biophys Acta. 1983 Dec 30;726(4):293–316. doi: 10.1016/0304-4173(83)90013-7. [DOI] [PubMed] [Google Scholar]
  13. Kanner B. I. Ion-coupled neurotransmitter transport. Curr Opin Cell Biol. 1989 Aug;1(4):735–738. doi: 10.1016/0955-0674(89)90042-2. [DOI] [PubMed] [Google Scholar]
  14. Kanner B. I. Modulation of neurotransmitter transport by the activity of the action potential sodium ion channel in membrane vesicles from rat brain. Biochemistry. 1980 Feb 19;19(4):692–697. doi: 10.1021/bi00545a013. [DOI] [PubMed] [Google Scholar]
  15. Kanner B. I., Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem. 1987;22(1):1–38. doi: 10.3109/10409238709082546. [DOI] [PubMed] [Google Scholar]
  16. Keynan S., Kanner B. I. gamma-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry. 1988 Jan 12;27(1):12–17. doi: 10.1021/bi00401a003. [DOI] [PubMed] [Google Scholar]
  17. Kuhar M. J. Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci. 1973 Dec 16;13(12):1623–1634. doi: 10.1016/0024-3205(73)90110-0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Neal M. J., Bowery N. G. Cis-3-aminocyclohexanecarboxylic acid: a substrate for the neuronal GABA transport system. Brain Res. 1977 Dec 9;138(1):169–174. doi: 10.1016/0006-8993(77)90793-4. [DOI] [PubMed] [Google Scholar]
  20. Radian R., Bendahan A., Kanner B. I. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem. 1986 Nov 25;261(33):15437–15441. [PubMed] [Google Scholar]
  21. Radian R., Kanner B. I. Reconstitution and purification of the sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem. 1985 Sep 25;260(21):11859–11865. [PubMed] [Google Scholar]
  22. Radian R., Kanner B. I. Stoichiometry of sodium- and chloride-coupled gamma-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry. 1983 Mar 1;22(5):1236–1241. doi: 10.1021/bi00274a038. [DOI] [PubMed] [Google Scholar]
  23. Schon F., Kelly J. S. Selective uptake of (3H)beta-alanine by glia: association with glial uptake system for GABA. Brain Res. 1975 Mar 21;86(2):243–257. doi: 10.1016/0006-8993(75)90700-3. [DOI] [PubMed] [Google Scholar]
  24. Zafra F., Aragon M. C., Valdivieso F., Gimenez C. beta-Alanine transport into plasma membrane vesicles derived from rat brain synaptosomes. Neurochem Res. 1984 May;9(5):695–707. doi: 10.1007/BF00964516. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES