Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2017 Mar 30;5(13):e01737-16. doi: 10.1128/genomeA.01737-16

Draft Genome Sequences of 24 Lactococcus lactis Strains

Lennart Backus a,b, Michiel Wels a,b,c, Jos Boekhorst a,b,c, Annereinou R Dijkstra c, Marke Beerthuyzen b,c, William J Kelly d, Roland J Siezen a,b,e, Sacha A F T van Hijum a,b,d, Herwig Bachmann b,c,f,
PMCID: PMC5374251  PMID: 28360177

ABSTRACT

The lactic acid bacterium Lactococcus lactis is widely used for the production of fermented dairy products. Here, we present the draft genome sequences of 24 L. lactis strains isolated from different environments and geographic locations.

GENOME ANNOUNCEMENT

Lactococcus lactis is a Gram-positive bacterium that is predominantly found on plant material and in the dairy environment (1, 2). It is extensively used in dairy fermentations (3), which is mainly due to its role in the development of texture and flavor through, e.g., proteolysis and the production of volatile flavor compounds (4). It also contributes to food preservation through the production of organic acids and bacteriocins such as nisin (5). Four L. lactis subspecies have been defined (6): subsp. lactis (7), subsp. cremoris (8), subsp. hordniae (9), and subsp. tructae (10). In this study we report the draft genome sequences of 24 L. lactis strains, of which 23 belong to subspecies lactis and one (LMG8520) is the type strain for the subspecies hordniae (Table 1) (11). However, we found in a detailed phylogenetic and comparative genome analysis that strain LMG8520 has a L. lactis subsp. lactis genotype.

TABLE 1 .

Overview of the 24 L. lactis strains in NCBI BioProject PRJNA294255

Strain Original strain name or culture collection no. Subspecies Accession no. Source of isolation Country of isolation
ATCC 19435a OJ lactis LKLC00000000 Milk (dairy starter) (11) Denmark
DRA4 lactis biovar diacetylactis LIWD00000000 Dairy starter (11) the Netherlands
E34 lactis LKLD00000000 Silage (11) the Netherlands
K231 lactis LKLE00000000 White kimchi (11) Japan
K337 lactis LKLF00000000 White kimchi (11) Japan
KF134 lactis LKLJ00000000 Alfalfa and radish (15) New Zealand
KF146 lactis LKLK00000000 Alfalfa and radish (15) New Zealand
KF196 lactis LKLL00000000 Japanese kaiware shoots (15) New Zealand
KF201 lactis LKLM00000000 Sliced mixed vegetables (15) New Zealand
KF24 lactis LKLH00000000 Alfalfa sprouts (15) New Zealand
KF282 lactis LKLN00000000 Mustard and cress (15) New Zealand
KF67 lactis LKLI00000000 Grapefruit juice (15) New Zealand
KF7 lactis LKLG00000000 Alfalfa sprouts (15) New Zealand
Li-1 lactis LKLO00000000 Grass (11) Belgium
LMG14418 TM 147 lactis LKLT00000000 Bovine milk (11) Belgium
LMG8520a HC-1-1 hordniae LKLP00000000 Leaf hopper (11) United States
LMG8526 B 6113 lactis LKLQ00000000 Chinese radish (11) United Kingdom
LMG9446 21L lactis LKLR00000000 Frozen peas (11) United Kingdom
LMG9447b 31L lactis LKLS00000000 Frozen peas (11) United Kingdom
M20 lactis biovar diacetylactis LKLU00000000 Soil (11) the Netherlands
ML8 NCDO1994 lactis LKLV00000000 Dairy starter (11) United Kingdom
N42 lactis LKLW00000000 Soil and grass (11) the Netherlands
NCDO895 X62 lactis LKLX00000000 Dairy starter (11) United Kingdom
UC317 lactis LKLY00000000 Dairy starter (11) Ireland

aType strain.

bThis strain was incorrectly labeled as LMG9449 in references 11 and 16.

The strains were grown overnight in 5 mL LM17 broth at 30°C. After propagation in fresh medium, cells were harvested during midexponential growth and total DNA was isolated as previously described (11) with the following modifications. Cell pellets were resuspended in a buffer [6.7% sucrose, 1 mM EDTA, 50 Mm TrisHCl (pH 8.0)] and incubated with RNase (0.5 mg/mL) and lysozyme (2 mg/mL) at 37°C for 1 h. Subsequently, cells were lysed by treating the samples with SDS (1% wt/vol final concentration) at 37°C for 10 min. The total DNA was extracted with phenol-chloroform, precipitated with isopropanol and sodium acetate (12), and dissolved in sterile water.

Whole-genome sequencing was performed at GATC Biotech (Konstanz, Germany) with 50 bp paired-end libraries on an Illumina HiSeq 2000. Raw sequence reads of each of the genomes were assembled de novo using IDBA (13) with default parameters at a target coverage of 50×. This resulted in draft genomic sequences for 24 L. lactis strains (Table 1). Annotation of the contig sequences was performed by the RAST server (14).

Accession number(s).

The genome sequences of the 24 L. lactis strains have been deposited as whole-genome shotgun projects at DDBJ/EMBL/GenBank under the accession numbers listed in Table 1.

Footnotes

Citation Backus L, Wels M, Boekhorst J, Dijkstra AR, Beerthuyzen M, Kelly WJ, Siezen RJ, van Hijum SAFT, Bachmann H. 2017. Draft genome sequences of 24 Lactococcus lactis strains. Genome Announc 5:e01737-16. https://doi.org/10.1128/genomeA.01737-16.

REFERENCES

  • 1.Van Hylckama Vlieg JET, Rademaker JLW, Bachmann H, Molenaar D, Kelly WJ, Siezen RJ. 2006. Natural diversity and adaptive responses of Lactococcus lactis. Curr Opin Biotechnol 17:183–190. doi: 10.1016/j.copbio.2006.02.007. [DOI] [PubMed] [Google Scholar]
  • 2.Kelly WJ, Ward LJH, Leahy SC. 2010. Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol Evol 2:729–744. doi: 10.1093/gbe/evq056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Siezen RJ, Renckens B, van Swam I, Peters S, van Kranenburg R, Kleerebezem M, de Vos WM. 2005. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71:8371–8382. doi: 10.1128/AEM.71.12.8371-8382.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Smit G, Smit BA, Engels WJM. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29:591–610. doi: 10.1016/j.femsre.2005.04.002. [DOI] [PubMed] [Google Scholar]
  • 5.Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi: 10.1038/nrmicro1273. [DOI] [PubMed] [Google Scholar]
  • 6.Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W. 1985. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6:183–195. doi: 10.1016/S0723-2020(85)80052-7. [DOI] [Google Scholar]
  • 7.Lister JB. 1873. A further contribution to the natural history of bacteria: and the germ theory of fermentative changes. Q J Microsc Sci 13:380–408. [Google Scholar]
  • 8.Orla-Jensen S. 1919. The lactic acid bacteria. Host & Sons, Co., Copenhagen, Denmark. [Google Scholar]
  • 9.Latorre-Guzman BA, Kado CI, Kunkee RE. 1977. Lactobacillus hordniae, a new species from the leafhopper (Hordnia circellata). Int J Syst Bacteriol 27:362–370. doi: 10.1099/00207713-27-4-362. [DOI] [Google Scholar]
  • 10.Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E, de Blas I, Ruiz-Zarzuela I. 2011. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 61:1894–1898. doi: 10.1099/ijs.0.023945-0. [DOI] [PubMed] [Google Scholar]
  • 11.Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SAFT, van Hylckama Vlieg JE. 2011. Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 4:383–402. doi: 10.1111/j.1751-7915.2011.00247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sambrook J, Russell DW. 2001. Molecular cloning, Vols. 1, 2, 3 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. [Google Scholar]
  • 13.Peng Y, Leung HC, Yiu SM, Chin FY. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. doi: 10.1093/bioinformatics/bts174. [DOI] [PubMed] [Google Scholar]
  • 14.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kelly WJ, Davey GP, Ward LJ. 1998. Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. Int J Food Microbiol 45:85–92. doi: 10.1016/S0168-1605(98)00135-4. [DOI] [PubMed] [Google Scholar]
  • 16.Rademaker JLW, Herbet H, Starrenburg MJC, Naser SM, Gevers D, Kelly WJ, Hugenholtz J, Swings J, van Hylckama Vlieg JET. 2007. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. Appl Environ Microbiol 73:7128–7137. doi: 10.1128/AEM.01017-07. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES