Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(8):2926–2930. doi: 10.1073/pnas.87.8.2926

Rapid neural regulation of muscle urokinase-like plasminogen activator as defined by nerve crush.

D Hantaï 1, J S Rao 1, B W Festoff 1
PMCID: PMC53806  PMID: 2109320

Abstract

Muscle plasminogen activators (PAs), such as urokinase-like PA and, to a lesser extent, tissue PA, increase dramatically after denervation induced by axotomy. The PA/plasmin system has also been implicated in degradation of specific components of the muscle fiber basement membrane after local activation of plasminogen. These results suggest that neural regulation of muscle extracellular matrix metabolism accompanies or precedes regeneration after injury and is mediated by activation of PAs. In the present study, we have used nerve crush to explore the neural regulation of muscle PA activities directly after subtotal axon interruption and during the process of reinnervation. Muscle contraction after nerve stimulation and estimation of choline acetyltransferase activity were used to monitor reinnervation. Within 24 hr of nerve crush, muscle urokinase (but not tissue PA) activity rose in soluble and membrane-bound muscle fractions, as shown by an amidolytic assay and a fibrin zymography. Membrane-bound activity was 5-fold higher than cytosol activity, but there was no shift between cellular compartments during the time course of denervation. Coincident with the return of choline acetyltransferase activity and muscle contractility, muscle urokinase returned almost to baseline levels. These results show tight regulation of muscle urokinase levels by some neural influence.

Full text

PDF
2926

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D., Ip M. C. Sprouting and degeneration of mammalian motor axons in normal and de-afferentated skeletal muscle. Proc R Soc Lond B Biol Sci. 1966 Jan 18;163(993):538–554. doi: 10.1098/rspb.1966.0008. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Carrell R. W. Alzheimer's disease. Enter a protease inhibitor. Nature. 1988 Feb 11;331(6156):478–479. doi: 10.1038/331478a0. [DOI] [PubMed] [Google Scholar]
  4. Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
  5. Danø K., Moller V., Ossowski L., Nielsen L. S. Purification and characterization of a plasminogen activator from mouse cells transformed by an oncogenic virus. Biochim Biophys Acta. 1980 Jun 13;613(2):542–555. doi: 10.1016/0005-2744(80)90110-2. [DOI] [PubMed] [Google Scholar]
  6. EDDS M. V., Jr Collateral nerve regeneration. Q Rev Biol. 1953 Sep;28(3):260–276. doi: 10.1086/399699. [DOI] [PubMed] [Google Scholar]
  7. Fernandez H. L., Duell M. J., Festoff B. W. Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J Neurobiol. 1979 Sep;10(5):441–454. doi: 10.1002/neu.480100503. [DOI] [PubMed] [Google Scholar]
  8. Festoff B. W., Hantaï D., Soria J., Thomaïdis A., Soria C. Plasminogen activator in mammalian skeletal muscle: characteristics of effect of denervation on urokinase-like and tissue activator. J Cell Biol. 1986 Oct;103(4):1415–1421. doi: 10.1083/jcb.103.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Festoff B. W. Neuromuscular junction macromolecules in the pathogenesis of amyotrophic leteral sclerosis. Med Hypotheses. 1980 Feb;6(2):121–131. doi: 10.1016/0306-9877(80)90078-x. [DOI] [PubMed] [Google Scholar]
  10. Festoff B. W., Oliver K. L., Reddy N. B. In vitro studies of skeletal muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle. J Membr Biol. 1977 Apr 22;32(3-4):345–360. doi: 10.1007/BF01905227. [DOI] [PubMed] [Google Scholar]
  11. Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med. 1978 Jul 1;148(1):223–234. doi: 10.1084/jem.148.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hantaï D., Festoff B. W. Degradation of muscle basement membrane zone by locally generated plasmin. Exp Neurol. 1987 Jan;95(1):44–55. doi: 10.1016/0014-4886(87)90005-7. [DOI] [PubMed] [Google Scholar]
  13. Hantaï D., Rao J. S., Festoff B. W. Serine proteases and serpins: their possible roles in the motor system. Rev Neurol (Paris) 1988;144(11):680–687. [PubMed] [Google Scholar]
  14. Hantaï D., Rao J. S., Kahler C., Festoff B. W. Decrease in plasminogen activator correlates with synapse elimination during neonatal development of mouse skeletal muscle. Proc Natl Acad Sci U S A. 1989 Jan;86(1):362–366. doi: 10.1073/pnas.86.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kielberg V., Andreasen P. A., Grøndahl-Hansen J., Nielsen L. S., Skriver L., Danø K. Proenzyme to urokinase-type plasminogen activator in the mouse in vivo. FEBS Lett. 1985 Mar 25;182(2):441–445. doi: 10.1016/0014-5793(85)80350-1. [DOI] [PubMed] [Google Scholar]
  16. Knudsen B. S., Harpel P. C., Nachman R. L. Plasminogen activator inhibitor is associated with the extracellular matrix of cultured bovine smooth muscle cells. J Clin Invest. 1987 Oct;80(4):1082–1089. doi: 10.1172/JCI113164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knudsen B. S., Silverstein R. L., Leung L. L., Harpel P. C., Nachman R. L. Binding of plasminogen to extracellular matrix. J Biol Chem. 1986 Aug 15;261(23):10765–10771. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Larsson L. I., Skriver L., Nielsen L. S., Grøndahl-Hansen J., Kristensen P., Danø K. Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. J Cell Biol. 1984 Mar;98(3):894–903. doi: 10.1083/jcb.98.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levin E. G. Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6804–6808. doi: 10.1073/pnas.80.22.6804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MAURO A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961 Feb;9:493–495. doi: 10.1083/jcb.9.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McArdle J. J. Complex end-plate potentials at the regenerating neuromuscular junction of the rat. Exp Neurol. 1975 Dec;49(3):629–638. doi: 10.1016/0014-4886(75)90048-5. [DOI] [PubMed] [Google Scholar]
  23. McCaman M. W. Biochemical effects of denervation on normal and dystrophic muscle: acetylcholinesterase and choline acetyltransferase. Life Sci. 1966 Aug;5(16):1459–1465. doi: 10.1016/0024-3205(66)90219-0. [DOI] [PubMed] [Google Scholar]
  24. McLaughlin J., Bosmann H. B. Regulation of increased acid proteinase in denervated skeletal muscle. Exp Neurol. 1976 Feb;50(2):276–282. doi: 10.1016/0014-4886(76)90002-9. [DOI] [PubMed] [Google Scholar]
  25. Meier R., Spreyer P., Ortmann R., Harel A., Monard D. Induction of glia-derived nexin after lesion of a peripheral nerve. Nature. 1989 Nov 30;342(6249):548–550. doi: 10.1038/342548a0. [DOI] [PubMed] [Google Scholar]
  26. Miledi R., Slater C. R. On the degeneration of rat neuromuscular junctions after nerve section. J Physiol. 1970 Apr;207(2):507–528. doi: 10.1113/jphysiol.1970.sp009076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Oldfors A., Fardeau M. The permeability of the basal lamina at the neuromuscular junction. An ultrastructural study of rat skeletal muscle using particulate tracers. Neuropathol Appl Neurobiol. 1983 Nov-Dec;9(6):419–432. doi: 10.1111/j.1365-2990.1983.tb00127.x. [DOI] [PubMed] [Google Scholar]
  28. Pearson C. M., Kar N. C. Muscle breakdown and lysosomal activation (biochemistry). Ann N Y Acad Sci. 1979;317:465–477. doi: 10.1111/j.1749-6632.1979.tb56562.x. [DOI] [PubMed] [Google Scholar]
  29. Rand J. B., Johnson C. D. A single-vial biphasic liquid extraction assay for choline acetyltransferase using [3H]choline. Anal Biochem. 1981 Sep 15;116(2):361–371. doi: 10.1016/0003-2697(81)90372-9. [DOI] [PubMed] [Google Scholar]
  30. Rao J. S., Kahler C. B., Baker J. B., Festoff B. W. Protease nexin I, a serpin, inhibits plasminogen-dependent degradation of muscle extracellular matrix. Muscle Nerve. 1989 Aug;12(8):640–646. doi: 10.1002/mus.880120805. [DOI] [PubMed] [Google Scholar]
  31. Rånby M., Norrman B., Wallén P. A sensitive assay for tissue plasminogen activator. Thromb Res. 1982 Sep 15;27(6):743–749. doi: 10.1016/0049-3848(82)90012-3. [DOI] [PubMed] [Google Scholar]
  32. Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol. 1988;4:93–126. doi: 10.1146/annurev.cb.04.110188.000521. [DOI] [PubMed] [Google Scholar]
  33. Sanes J. R., Chiu A. Y. The basal lamina of the neuromuscular junction. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):667–678. doi: 10.1101/sqb.1983.048.01.070. [DOI] [PubMed] [Google Scholar]
  34. Sanes J. R. More nerve growth factors? Nature. 1984 Feb 9;307(5951):500–500. doi: 10.1038/307500a0. [DOI] [PubMed] [Google Scholar]
  35. Slack J. R., Hopkins W. G., Pockett S. Evidence for a motor nerve growth factor. Muscle Nerve. 1983 May;6(4):243–252. doi: 10.1002/mus.880060402. [DOI] [PubMed] [Google Scholar]
  36. Snyder D. H., Rifenberick D. H., Max S. R. Effects of neuromuscular activity on choline acetyltransferase and acetylcholinesterase. Exp Neurol. 1973 Jul;40(1):36–42. doi: 10.1016/0014-4886(73)90121-0. [DOI] [PubMed] [Google Scholar]
  37. Tucek S. Choline acetyltransferase activity in skeletal muscles after denervation. Exp Neurol. 1973 Jul;40(1):23–35. doi: 10.1016/0014-4886(73)90120-9. [DOI] [PubMed] [Google Scholar]
  38. Weinberg J. B., Hobbs M. M., Pizzo S. V. Microassay for the photometric quantitation of cell-associated plasminogen activator using a chromogenic tripeptide substrate. J Immunol Methods. 1984 Dec 31;75(2):289–294. doi: 10.1016/0022-1759(84)90112-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES