Skip to main content
Genomics Data logoLink to Genomics Data
. 2017 Mar 28;12:102–108. doi: 10.1016/j.gdata.2017.03.010

Searching for active mobile genetic elements in dsRNA fraction of Pinus sylvestris having witches broom abnormalities

AA Pochtovyy a,b,, OYu Baranov c, IE Rubel' c, OA Razumova c, VE Padutov c, AV Khromov d, AV Makhotenko d, AP Tkachuk a, VV Makarov e, VA Gushchin a,e
PMCID: PMC5382025  PMID: 28409117

Abstract

The most common type of coniferous mobile genetic elements are retrotransposons. Despite of their early positive impact on evolution of modern coniferous species they can have a significant negative impact for Forestry and breeding. Breaking genomic structural integrity mobile elements can cause phenotypic defects of plants. In this regard, the study of the diversity of coniferous mobile genetic elements is particularly interesting. In the present paper, we describe mobile genetic elements in dsRNA fraction of Pinus sylvestris having witches broom abnormalities. In result of assembled contigs analysis by RepeatMasker 70 mobile genetic elements were identified. A 68 of that were retroelements. Most of elements represented by Gypsy (16 contigs) and Copia (48 contigs). In 4 cases retroelements specific to Pinus taeda were identified. In most cases fragments of integrase (24), reverse transcriptase (22) and RNaseH (15) were identified. Results of the study may be of interest for coniferous breeding and genetic specialists.

The raw data of these experiments have been deposited at NCBI under the accession number SAMN06185845.

Keywords: NGS, dsRNA, Mobile genetic elements


Specifications
Organism/cell line/tissue Scots pine
Sex NA
Sequencer or array type Ion PGM (Thermo Scientific, USA)
Data format Normalized and processed microarray data, qPCR data
Experimental factors dsRNA fraction of Scots pine shoots tissue with signs of “witches broom”
Experimental features The data were obtained on dsRNA fraction sequenced at Ion PGM
Consent NA
Sample source location SFI “Korenevskaya Experimental Forest Enterprise of NAS of Belarus” Gomel, Belarus.

1. Introduction

In coniferous plants retrotransposons make up a large part of the genome [1], [2]. It is estimated that 70% of the genetic material is repetitive genetic elements. About 58% among it of the genome constitute LTR-containing retrotransposons (35% Group Ty3/Gypsy, 16% a group of Ty1 / Copia, 7% is not classified), 1% - the LINE-elements, 1% - DNA transposons, 10% - unclassified high copy number DNA [3]. Mobile genetic elements played an important role in the evolution of conifers genomes [3], [4]. However, the virus-like genetic elements (or retrotransposons) have a negative value for forestry, because of their displacement and insertions they cause different disturbances to structural and functional organization of the genome [5]. On the other hand, virus-like mobile genetic elements are a reservoir of natural variation and play an important role in macroevolution processes [6]. Studies of retrotransposons could shield light to complexity of its regulation to develop methods of transposon\destabilisation depending on breeding program needs.

2. Experimental design, materials and methods

2.1. Pine and spruce sampling and processing

Samples of the Scots pine (Pinus sylvestris L.) were collected in forest stands around the Homiel town (52°26′43″N and 30°59′03″E), which is located about 40 km from the southeastern border of the Republic of Belarus. Pine samples were green shoots (with needles) of witch’s brooms (21 pcs. from individual trees), spruce samples were green shoots of pineapple galls, produced by Adelges abietis L. (6 pcs. from individual trees). Samples were dissected with thin scalpels under a stereomicroscope (Leica M50, Leica Microsystems GmbH, Germany). Inner tissues was carefully separated from the coating surrounding tissues, and quickly transferred to microtubes containing RNAlater solution (Thermo Scientific, U.S.A.).

2.2. RNA isolation and ds cDNA pool preparation

Total RNA was prepared using the GeneJet Plant RNA Purification Mini Kit (Thermo Scientific, U.S.A.), which is based on a combination of guanidine-isothiocyanate lysis and silica-membrane purification in a mini-spin column. The procedures were performed according to the manufacturer's instructions. The quality of the RNA was analyzed with denaturating RNA electrophoresis in 1 × TAE 1% agarose gel and quantified by UV absorption using Implen P330 (Implen GmbH, Germany).

The ds cDNA pool was prepared using Maxima H Minus Double-Stranded cDNA Synthesis Kit (Thermo Scientific, U.S.A.). Briefly, the synthesis of first strand cDNA began with 1 μg of total RNA and 0.5 μg random hexanucleotide primers. The resulting first strands of cDNA (RNA-DNA hybrid molecule) were processed with enzyme mix of E. coli RNase H, DNA polymerase I and DNA ligase immediately. E. coli RNase H inserted nicks into the RNA, providing 3′ OH-primers for DNA polymerase I. The 5′–3′ exonuclease activity of E. coli DNA polymerase I removed the RNA strand in the direction of synthesis, while its polymerase activity replaced the RNA with deoxyribonucleotides. DNA ligase linked the gaps to complete the ds cDNA strand. The quality of the ds DNA was analyzed with electrophoresis in 1 × TBE 1.5% agarose gel and quantified by UV absorption using Implen P330 (Implen GmbH, Germany).

2.3. cDNA library preparation and deep Sequencing using Ion Torrent Technology

A fragment library was generated with an input of 100 ng ds cDNA using the Ion Xpress Plus Fragment Library Kit (Thermo Scientific, U.S.A.). Next, DNA fragmentation, adaptor ligation, fragment size selection and library amplification were carried out according to manufacturer's instructions. The targeting of fragments of approximately 330 bp was performed with 1.5 × TBE 2% agarose gel (Helicon, Russia). Prior to emulsion PCR, the size distribution were assessed with 1.5 × TBE 2% agarose gel (Helicon, Russia); concentrations of the libraries were normalized with Ion Library Equalizer Kit (Thermo Scientific, USA). The fragment library was adjusted to approximately 26 pM and amplified with Ion Sphere particles™ (ISPs) by emulsion PCR using the Ion OneTouch™ Instrument with the Ion OneTouch™ 200 Template Kit (Thermo Scientific, USA) and template-positive ISP enrichment according to the manufacturer's protocol (Thermo Scientific, USA). About 50% of the ISPs were and then sequenced on an Ion 314™ chip using the Ion Torrent Personal Genome Machine (PGM™) (Thermo Scientific, USA) for 130 cycles (520 flows) with the Ion PGM™ 200 Sequencing Kit (Thermo Scientific, USA). Initial processing of ION PGM data carried out in an automatic mode using Ion Torrent Suite (Thermo Scientific, USA) software.

2.4. Sequence filtering and (de novo) assembly of deep sequencing data

Ion Torrent Personal Genome Machine (Thermo Scientific, USA) sequencing can generate processed reads 200–260 base length for analyzed cDNA fragments.

Initial data had been cleared off from sequences with a grade lower than Q < 20 via FASTQ filter quality (http://hannonlab.cshl.edu/fastx_toolkit). Since RNA sequencing data contained rRNA sequences it was necessary to conduct the removal of rRNA sequences from the raw data using riboPicker tool. The resulting data set was assembled with Trinity (version 20130814) in accordance with the guidance provided by the developers, and the default settings. To identify retroelements in assembled sequences RepeatMasker program was used [7]. The program uses Repbase the repetitive elements library [8].

3. Results

3.1. De novo assembly, retroelements identification and classification

After quality filtration and rRNA cleaning a 110,746 high quality reads were assembled to 1558 contigs. Length of contigs varied from 201 to 11,902 bp. Average length was 421 bp and N50 was 442 bp. In result of 1558 contigs analysis by RepeatMasker, 70 mobile genetic elements were identified (Table 1).

Table 1.

Results of retroelements identification.

Code Name of element Class Gene identified in contig E value Sequence of contig, 5′–3′
c1001_g1_i1 Gypsy-32_PAb-I LTR/Gypsy Reverse transcriptase 4E − 05 GAATATGATATCTTATTTCAAGAACCTGAAGGTCTGCCACCAAAAGGGAAATTGTACATGATA
TTAATTTGCAGCAAGATGTTCAATTGCCTAACATCTGAATGTACAGGTTATCCACTTTAGAGAA
TGCAGAAATCAAGAAGCAGGTACAGGAGCTGCTCGAGAAAGGTTCATAAGACCAAGCACATC
ACCATGCGGATCTCCAATAGTGTTGGTGAAAAGAAGG
ATGGTTCATGGAGGATGTGCATTGATTAC
c1210_g1_i1 Gypsy-24_PAb-I LTR/Gypsy Reverse transcriptase 3E − 07 ACCACCGGACCGGGGTTTGAGCACACCATTGAGCTTCAGCAAGGCATACAGGCAGTGATTAC
TACCCCCTATAGGCATCCCAAGGCCTATCGAGATGAGATTGAGCGGGCCATTCAGGAGTTGTT
GGCTCTTGGCACATTCGTTCGAGCACGAGTCCTTTTGCTTCTTTCGTGATGTTGGTGAAGAAGA
AGGACAACACATTGAGGATGTGCATTGACTACAGGCCCT
c123_g1_i1 IFG-7a_PTa-I LTR/Gypsy RNaseH 2E − 46 CAACAATATTGAAGAAAGATGCATTTTTTACTCTAGAAACAACTAAGGCCTTTGAACATCTTA
AAGAGACAATGTGCAAAGCTCCGGTCTTAGCTACACCAGACTTCACAAAACCTTTATTGTGGA
ATGTGATGCTTCAGGAAATGGAATTGGTGTTGTTTTAATGCAAGATGAAAGACCCATTGCTTT
TGAAAGTCGTCCAATCAAGGGAAAGTTTTTAAGCAAAGCTATTTATGAGAAGGAAATGTTGG
CAATACTACATGCATTTAAGAAATGGCGACACTACCTAATGGGAAGACACTTCAAGGTAAAA
ACGGATCATGATAGCCTTAAATACTTTTAGAAACAAAGTTATTATCCATCTCGAAG
c1288_g1_i1 Gypsy-81_PAb-I LTR/Gypsy RNaseH 3E − 16 TAAAGAATTGTATGCATTAGTACAGAGTGTGAAAAAGTGGAAACATTACTTAATGGGCAAAG
AGACAGTAATACATACTGATCATCAACCACTTCAATATCTACACTCCCAAACTAAGTTGCAGCA
ATCAAGACACTATAGATGGATGGGTTTCTACAACAGTTTCATTTAGTCATCAGATATAAAAAG
GGCATACATAACAAAGTTGCAGACATGTTATCTAGACCATTATAAATGCATCTATATACTTAA
GCATAATTTGTACTACATGAAAGCTACAT
c1319_g1_i1 Gypsy-71_PAb-I LTR/Gypsy Integrase 3E − 23 CCATATTCAAGTCACCCAAGTTATCAAAAGACGCTGACAGCAGTGAAGAAGTTTTATTATTGG
CCGAATTTGAAAAGGATGTAGCAAAATTTGTGCTAGGTGTTTGGATTGTCAGCAGGTGAAGG
CGGAGTGTAAGCGTCCAGGTGGATTGCTACAGCGAATTGCGATTCTAGAGTGGAAATGGGAG
GTCATTTCCATGGACTTTATCATAGGTTTGTCGAGGACAATGAGACAACATGATTCCATCATG
GTTGTTATGGACAGGTTGACAAAAATTG
c1441_g1_i1 Gypsy-81_PAb-I LTR/Gypsy Reverse transcriptase 3E − 11 TGTTTTTAGACCATTCATTGATGATTTTGTGATAGTCTATTTAGACGATATTCTTGTTTTCAAGA
GAACATGGGATGAACATGTAAAGCATGTAAAGCAGATTTCAGATGTTTTGAAAAGAGAAA
c367_g1_i1 Gypsy-20_PAb-I LTR/Gypsy RNaseH 1E − 06 CAGGATACTATAAAAGATTCATAAAGAATTACGCACACGAGACTATTCCTTTAACGAATTTAC
TAAAGAAAAATTCATTTCAATGGGACAATAAAGCAGATAAATGCTATTTAAAATCCTTAAAAG
AGATAATTTCATCTACTCTGGTTTTGGCAACCCCTGATTTCTCCAAACCTTTTGTGGTAGAGTG
TGATGCCTCAGGGTTTGGGATTGGTGTAGTGCTAATGCAAGATGATCACCCCTAGCTTACGAA
AGTCGAAAACTA
c390_g1_i1 IFG-7a_PTa-I LTR/Gypsy Integrase 3E − 87 CAATGTTGGAGGAGATTCAATGGATTTATCAGAGGTTTACCCAAGTCCAAAGAAAGAGTGTT
ATCAATGGTGGTAGTTGACAAACTTACCACGTATGCACATTTTGTGCATTATCACATCATTTAA
AGCCAGTACAGTTTCTACTGCATTTATGGAAACAATTCAAAGCTACATGGAAACCCAAAGATT
ATTGTAAGTGACAGAGATCCCATTTTCACTGGAAATTTTTGGACAGAATTATTTTCTTGTCTTG
GTACTCAGTTAGCTCATAGCTCATCTTATCATCCTAATCTGATGGGCAAACTGAGATAGTAAA
CAAATGTTTGGAAGGATATCTTCGTTGCTTTGTATCTGATAAACAGACACAATGGGTCAAATG
GTTGCCTCTAGCTGAATGGTGGTATAACACTTCCTTCCATACCGTAGCAAAATGACCCATTTAT
GGCACTTTATGGATATCTTCCACCATCCATCACATCATATTTAAGAGAAAATTCTAAGGTTCAA
GCAGTGGAAAATCACATCAAGCATCAACAAGAAGTTCTCCAACTCTTAAAGAATAACCTCGTG
TTGGCGCAGAATAGAATGAAACAACAGGCAGATCAACATCGCAACGAAAGAAGTTTTGATGT
AGGTGACTGGGTATTCCTACGGCTACAACCATATAAACAAATGTCCCTCAAGCAAGCTAAGAA
GGATAATAAATTATCACCAAAGTACTATGGTCCTTACAAGTATTGCAAAGATTAGTACTATGG
CATACAA
c422_g1_i1 Gypsy-58_PAb-I LTR/Gypsy Reverse transcriptase 4E − 14 TGCACCCGCAACATTTCAGAGAGTAGTATTAACAATTTTGCTAATCTGGTCCACGAATGTGTTG
AGGTATATATGGATGATTTTCAGTATATGGTGATTCCTTTGACAATTCTTTGCAAAATCTTGAA
AAAAATTACAACGATGTATAGAAACCAACTTGTCGTTAAGCAGTGAAAAATGTTATATGATGA
TGAATGAGGGAATAGTCTTAGGACATCATATTTCTCCTGAGGGAATCAAGGTAGACC
c434_g1_i1 PGGYPSYX1 LTR/Gypsy Reverse transcriptase 1E − 08 ACATATTGATGGCCTTCTTGACCAACTCAAGGGGCCACATACTTAAACAAGATTGATTGAAGT
TTGGCTATCACCAGGTTCCAATAGAACCCACATATGTATGGAAGATCGCCGTGAAATCTAAGA
ATGACCTTTTTAGGTGGTTGGTCATGCCTTTGGGTTGACAAATGCCCCTGCAACTTTTATGAGG
CTGATGGATGACATCTTGCGGTCCTTCAC
c530_g1_i1 Gypsy-69_PAb-I LTR/Gypsy Protease 2E − 11 GACAAGTTAAGATTAGTGAAAAAGTACACCCTACTCCTTACAAAGTGTCATGGCTGCAAAAA
GGACATCAGCTTATTGTGACAGAAACAATGCAAGGTAGAAATCTAGATTAGTACTTATAGGG
ATGTGGTATTATGTGATGTAATGCCAATGGATGTATGCCATGTATTGCTAGGAAGACCTTGAC
AGTTTGATCAGAAA
c6_g1_i1 IFG-7a_PTa-I LTR/Gypsy Protease 2E − 46 ATGAATCAGACCATATCTTGTAAAGCATTGGCAAGAGTTACCACTCCTCAAACTCTCAAGATA
GGACATATCAAGAAGAAAAAGGTAAGAGTGTTGATTGATTCGGGCAATAACCATAATTTTAT
TGATTGTAAGATAGCCAAGGAATTGAATTGCTTCCTATATCCAGCACCAGAGTGTCAAGTGAT
GATTGCAAATGGAGGAACAATAAATTGCTCTGGAAAGTGCCATAATATTAAGCTATCCATGG
GAGAATATGTATTGACTAGCCCAATGCTTTCCATTCCAATGGGAGGTGCTGATGTTGTACTAG
GAGTCCAATGGCTACAATCCTTGGGTACAATAGCTTTTAATTTTCAAGAACTTTTCATGAAGTT
TTTCTGTGGAAGGAAAGGAATTTGAATTAAGGGGTATTGCAGGGAAACCAGGAAAGATAAT
CAGTCTAATGGCATGACAAAGCTTCTAAAAAAGGAGCAAAGGGGTGTAATTGCACAATTATG
TTCGCTAGATGTTTCCACATTAGAATCATCTATTTCTCCAGATCTCCAAAAAGTCCTGGACAAT
CATTCCAAGGTATTTGAGACTCCCAAATGTCTCCCACCTATGCGTGATCATGATCATGCTATTC
ATCTGATTCCAGGAAGTGTTCCTCCAACATCAGGCCGTACAGATATCCCTATGTCCAAAAAGT
GAAATTGAACGTATGGTTGCAGAAATGCTAGAGGCTGGTATAATTCAACCGAGTCAAAGTTC
TTTCTCTGCTCCAG
c611_g1_i1 IFG-7a_PTa-I LTR/Gypsy RNaseH 9E − 33 AGAAGAAAGACCCATTGCTTTCGAAAGTCGTCCAATCAAAGGAAAATATTTACACAAAGCTA
TTTATGAGAAGGAAATGTTGGCAATACTACATGCACTTAAGAAATGGCGACCCTACCTAATGG
GAAGACACTTCAAGGTAAAAACAGATCATGATAGCCTTAAAATACTTTTTAGAAACAAAGAT
TATCCTCTGAAGAGC
c896_g1_i1 Gypsy-15_PAb-I LTR/Gypsy RNaseH 4E − 08 ATGGTCGCTTTAAAGATCTGGAGACACTATTTGGTGGGACGAAAGTTTACACTTAAAAGCGAC
CATCAAGTCTACAATATTTGTTCACCCAAAGAGACTTAAATGCCAGGCAAAGGCGATGGAGT
GATTCCTAAGTGAATATGACTTCGGAATATCATATATTAAGG
c897_g1_i1 Gypsy-78_PAb-I LTR/Gypsy RNaseH 3E − 12 AACTGCCCTACCTACGATAAGGAGCTCTATGCCACGGTGCAAGCTGGGAGGAAGTGGAAGCA
CTATCTGATGGGAAAGGAGACAATAATCCACACAGATCACCAGCCGTTACAGTAAATGCAGG
CCTAGAATAAGCTACAACTGACCAAGCAATACAAGTGGATGGGTTTTACTACAGTTTCATTTG
GTGATCAAGTATAAGAAAGGCATCACAAACAAGTTGGCCGATATGCTTTCA
c954_g1_i1 Gypsy-6_PAb-I LTR/Gypsy Reverse transcriptase 6E − 29 GGTGACGGAGCAAGACATCCCCAAGACAACTTTCAGATGACATTATGGGCATTTCGAGTTCCT
GGTCATGCCTTTTGGGTTGAACAATGCACCGGCTCCTTTCCAGTCGTGCATGAACCACGTGTT
CAGAGGTTAGCTGAGGAGGTTCGTACTAGTATTCTTTGATGGAATTTTGATCTACAATAGGAC
ATGGGAGGAGCACCCAA
c1010_g1_i1 Copia-22_PAb-I LTR/Copia Integrase 0.088 TCATTTTAGAATTTTGGAAGTCCCGTATACTTTCATGTGACCAAACAAGAAAGAAGCAAACTG
GGTGCATCTAGAAAGAAGGAATCTTTGAGGCTATAGCGAAATTCTAAGGGCTATAGAATTTA
TGTGGATGGTCAAAGGGAAGTTGAGAGAAGTCATGATGTCACCTTTGATAAAGATATGGCTC
TTAGCAAGGTTGACAACCTTCC
c1063_g1_i1 Copia-17_PTa-I LTR/Copia Reverse transcriptase 5E − 06 TTCATCAAGAATGACACAGATCCCGACCTCTACTACTTGATGGTAGAGGATGAGACACTCATT
TAGTTTTATATATGGATGACCTCTTCTTGACAGGGTCATCAAGTCTTATAGATGACTACAAGAG
GAACTTTAAAACAAAGTTTGACATGAAGGATTTGGGTTGATGCACTGTTTCCTAGGCTTGGAA
GTGTGGCAGATATATGGGGAGATCTTCCTTGGTCAAGGGAGATATGCTA
c1088_g1_i1 Copia-37_RC-I LTR/Copia Integrase 8E − 12 TATTTCATGTTGATAATTGATGATTTCAGCAAGATGATATGGGTTGTTTTCTTAGAGAGAAATC
TAGAGCCTTTGAAGTTCAAATAATTCAAATTTATGGCTGAAATGAAATTGATTGCAAGATCAA
GAGCATAAAATCTGATAATGGAAATGAGTTCACTTCAAAAGAGTTTGATGAATTTTGCAAGAA
GCATGGCATCAAAAGGTTGTTCACT
c1105_g1_i1 Copia-13_PAb-I LTR/Copia Integrase 3E − 12 ATATTGAGGCCGATAATGGGACCGAATATGAGTCAAATGAATTCAGAGACTATTTAGAGAAG
CTGGAATTAAGAGGGAGACTACTACTGCATATACTCTTGGACAAAATGGTGTCGTCGAAAGG
AAGAATCATACTATCGTAGAAGCCACCCGTGCTATGCTTCGTGATCAAGGTCTTTCGAAGTTCT
TATGGGGAGA
c1161_g1_i1 Copia-20_PAb-I LTR/Copia Integrase 5E − 16 TCAAGGAGTTCAAGGCTCTGGTGGAGAATCTGACTGGGAAGAAAATAAAAGTTTTGCGCTCA
GAATAATTGGTGGAGAGTATGTCGATAAGGACTTCACTGATTTTTGCGCTAAGGA
GGGCAATTAGAAGAGAAGTGGACAACTCCCTACAATTCAGAGCAGAATGGAGTAGCAGAAA
AGAAAGAAACAAGACTATTAGTAGAAGCAGCTAGGGCCATGATGTATGATCAGGATATGCCA
AAATTCCTGTGGGCAGAAGCATGCAGCACGGCAGTGTATGTCCAGAACAAGACTCCTCAT
c1211_g1_i1 Copia-28_PAb-I LTR/Copia Reverse transcriptase 2E − 11 GAATTTTACATGAAGGATTTGGGGTTGATGCACTATTTCCTAGGATTGGAAGTGTGGAAGAA
GGATGGGGAGATCTTCCTTGGGCAAGGAAGATACGCTACAAATATTCTGAAGAGGTTCAGAA
TGTAGGATTGCAGACCCATGTCTACGCCCATGATTAC
c1221_g1_i1 Copia-7_PAb-I LTR/Copia RNaseH 2E − 49 GGATATGTAGATGCTGACTATGCAGGTGATTTGGACAAAAGCAGATCTACTACAGGTTACGT
CTTTACTCTTGCAGGTGGAGCAATTAGTTGGATGTCAAAGCTTCAAGACACGGTTGCATTGTC
CACTACCGAAGCTGAATATATAGCTGCTTCAGATGCCAGTAAAGAAGCAATCTGGTTAAAGG
GTCTGCTTGATGAGATTGGACGGACATAGAAGAAAGTGAATGTACTTTGTGACAGTCAAAGT
GCTATTCACTTGGCCACAAACCCTGCCTATCACAGTAGAACCAAGCACATTGATGTGAGATAT
CATTTT
c1222_g1_i1 Copia-27_PAb-I LTR/Copia Integrase 5E − 16 CCTTATAATCCTCTGCAAATGCAGTAGCTGAGAGGAAAATAGAACCCTTGTTGAAGCCTCCAA
AGCAATGATGTTTGACCAAGACCTTCCTATCTCTCTTTGGGCCGAAGCTACCAGGACAGTGGT
TTACATTCAAACCGTAGCCTCATTCCATTCTCAAGGATAAAACACCTGAAGAAGCTTTCACTGG
AGTCAAGCCTGATGTAAGCCACTTTAGAGTCTTTGGTTGCCCAGCTTACATTCATGTTCCCAAG
GACAAGAGGTCCAAACT
c1223_g1_i1 Copia-28_PAb-I LTR/Copia Reverse transcriptase 5E − 13 GGATCGATAGCTACTTGATGAAGTTGGGATTCACTAGGAGTGAAGCCGATCCTAACCTTTACT
TTAAGGTTGAAGATGACAAGCCTCTCATACTGGTGTTGTATGTGGATGACCTCTTTCTAACAG
GTGCAGACCCTCTCATTCACAAATGTAAGAGGGAGTTGGCTTCTGAATTTGAAATGAAGGACC
AAGGACTTGAAGTGTGGCAGAAGCCAAGGGAAATTTTCCTATCTCAAGGAAAATAT
c1242_g1_i1 Copia-27_PAb-I LTR/Copia Integrase 4E − 10 GGAAAAAGAATCAAGACGTGAGGACCAACAATGGAACCGAACATGAATCTAATGAATTCAAT
GACTTTTGTAGAGAGGCAAGCATTAAGAGGGAGACACCCATTTTGTATACTCCAAAGCAAAAT
GGTGTTGTTGAAAAAAGAATCGAACTATTATGGAAGCCACTCGTGCCATGCTCTATGATCAAG
GTCTACTGAAATTCTTGTGGGAGAAG
c1252_g1_i1 Copia-1_PAb-I LTR/Copia Reverse transcriptase 3E − 06 TGTTATATGAGGATGACCTCTTCATAACAGGTGCAGACCCTCTCATTCACAAATGTAAGAGGG
AGTTGGCTTCTGAATTTGAAATGAAGGACCTAGGACTTGAAGTGTGGCAGAAGCAAGGGAAA
TTTTCCT
c1260_g1_i1 Copia-4_PAb-I LTR/Copia Integrase 2E − 09 AATAGGTGTCCATCTCATGCTCTCAAAATAAAGACTCCCTATGAAATTTGGTATGGCCACATTC
CTTTGGTAAGCATCTCAAGGTTTTGGTTCCACCTGTTATGCCTTGGTTCCTAAGGAACAAAGAA
ATAACTTGGTGCAAGGAGTTGAAAATGTATCTTCTTGGGATACTCAAATACCTCCAAAGCATA
TCGTCTCTGTGATGAAGTAATAAGAAGCTTATAATATCTAGAGATGTGATATTTTT
c1262_g1_i1 Copia-28_PAb-I LTR/Copia GAG 1E − 06 AAGATAAGATGCTATGGATGTCATGAACTTGGGCACTATAGAAGAGATTGTCCTAATCATAGT
AAGGACAAGGGGAATAGGGAAGAAGCCCACATTACTGAAGAAGTGAAAGAACCTGAGTCAA
AGAAGCTTAAAAATGAAGAAGTAAAAGATCTC
c1264_g1_i1 Copia-15_PAb-I LTR/Copia Integrase 5E − 27 TCAGCAGTTGGGGGTATGCAGCGCCTGTCAAGCGGGAAAGCAACATCGGTCTTCATTCAAAA
ATGGAGAATCTTGGTGCGCATCTAAGGTACTTCAGTTACTTCATGCTGATATTTGTGGTCCTAT
GAATACAGCTTCTATCACTGCTTGCAAATATTTTTTACTTATTGTAGATGATTTCAGTAGAAAG
ATGTGGGTGTATTTTTAAAAATAAATCTGATGCTCTTAGTACCTTTCAGAAGTTTAAAACATTA
GTTGAAAACGAATCTGGTTGTAATATCATGACCCTTAGGACCGACAATGGGGGGAATTTGTTC
CTCAGCTTTGCCAACTTCTGTGATATTCATGGCATCAAACGTCAAT
c1371_g1_i1 Copia-27_PAb-I LTR/Copia Reverse transcriptase 2E − 05 TTCGAGATGAAAGACCTAGGACTGATGCACTATTTCCTAGGCCTGGAGGTCTGGCAGAGACCT
GGAGAGATTTTCCTTCTCAAGGAAAGTATATTGTGAAGCTTCTGGAAAGATTTGGGATGGTGG
ACTGTAAGTCCGTGTCGACACCAATGGAACTCAACTTTAAGAAGTTGAGTG
c1384_g1_i1 Copia-25_PAb-I LTR/Copia Reverse transcriptase 2E − 06 TTTCTTCTTCAGATGATGAAAGTGAGGAGGATGATAATCCTCCCCCACCTTCTCAGGATCCTCA
ACTTCCAAGATGGGTCCGTGCTACTCGGGATGCAGCAGGTGATCTTGCCGGTAATCCTACAGA
TCAGCGACGTACACGTTCTCAGTTTGAAAGAGCCTCTTCTTTACTGGCTCAAGCTCCAATAAAT
CATGATCCTGACACTTTTGCAGAAGCTTCAGGCCATCCACATTGGGAAGCAGCTATGAATGAA
GAATATCATTCATTGATGACAAATGATACATGGGAT
c1404_g1_i1 Copia49-PTR_I LTR/Copia RNaseH 2E − 22 TTACATATGAAGCAAGTCGGTCCTATGAAGTTATACTGTGATAACAATGCAGCATGTGATACT
GCTCATAATCCAGTTCAACATGATCGAACTAAGCATGTTGAGGTTGATAGGCATTTTATCAAG
GAGAAACTAGAAGCAAAGTTGATTGTAGTTCCTCATGTTCGATCTCAAGAATAGCTTGGTGAT
GTGCTGACCAAAGCAGTTGTCAAACCAAGCATT
c1452_g1_i1 Copia-20_PAb-I LTR/Copia Integrase 1E − 13 AGACAATAGAGGTGAGTACACAGATAGTGACTTCACTAGTTTTGTGCACAGGAAGGCATCAG
GAGGATTGGACAATTCCATACAATCCACAACAAAATGGGGTAGCAGAGTGGAAGAACAAGTT
TATAATTGGGGCTGCAAAGGCAATGTTATATGACCGGGATTTTCCCAAGTTTCTGTGGGCAAA
GAAATGTAACACAGCTATGTATATACAAAACAGGGTTCCT
c1457_g1_i1 Copia-28_PAb-I LTR/Copia Integrase 2E − 24 TAAATGAAGAAGGATGAAACATTCCAATGGTTCCGCTCTTTCAAAGCCTTGGTTGAAAATCAA
ACAGGGAAGAAGATCAAAATGTTAAGGATTGATAATGGAACTGAATATGAATCAAATGAGTT
CAATGACTATTGTAGAGAAGCTGGCATTAAGAGGGAGACTACTACCGCATATACTCTCGAACA
AAATGGAGTTGCTGAAAGAAAGAATCGTTCGACTATAGAA
c1458_g1_i1 Copia-28_PAb-I LTR/Copia Integrase 4E − 21 CATGAAGGAGTATGTAAGGGATGTGCATTGGATAAGAATACCAAGAGACCATTTGGAAGCAG
TGTTTCATGGTCAAAAGAAATCTTGGATCTCATTCACTATGATGTATGTGGCCCTATGACTCCT
AAATCACTTGGAGGTCATCTATATTATGTCACATTTGTCGATGATCATTCAAGAAAGACCTAGT
TTAACTTAATGAAAACCAAGGACGAAGTATTTACAAAATTTCAAGAATTCAAAGTTGAAG
c169_g3_i2 Copia-25_PAb-I LTR/Copia Protease 4E − 06 TTCTCATGAGTGGCTCATTGATTCTGGAGCTTCTTATCACAATAGGCCAAAACAAAGCCATGTT
TTCTTCTTTAAATGATTGTAACACCAAAATATATATGTTGGTATGATAGATCTCTTAATGTTGTA
GGGACTGGAACTGTTCATCTAGACAATGGTCAGTTCAATGATGTATTATGTGTTCCAAACCTAT
CCTGCAACCTTCTATCTGACTATCAGATAACTCATTCAGGTGAAGGTAAAATCGTTGAATTTTC
ACCTCACGATGTTGTAATTAAGGACCTAA
c217_g1_i1 Copia-25_PAb-I LTR/Copia RNaseH 0.099 ATACTTCGTTATGTTCGAGGTACAATTCAGTTTACAGTGCAGAAGCATCTCCTCTATTGGTTGG
TTTCACTAATTCTGATTGCGTCGGTGACCCTGATGATTG
c217_g1_i2 Copia-25_PAb-I LTR/Copia RNaseH 3E − 30 GGAAGCCTACTGCAGGTTATGTGTTCACTCTTGGTTCAGGACCTATTACATGGGCTTGCAAGA
AACAAAGTGCCATTTCTCTTTCTTCAGCAGAAGCAGAGTATCCTGGTGCCGTAGAAGCTAGTA
AGGAAGCCTTGTGGCTTCGTCAGATCCTATCAGAGTTTGGCTTTGAGCAGCAGCATCCGACTA
CACTTTGGTGTGATAATCAAAGTGCCATTCAGCTATGCAAAGATCCAGTCCAGCATCAGCGCA
GCAAACACATTGAACT
c346_g1_i1 Copia-28_PAb-I LTR/Copia Reverse transcriptase 0.002 CCTGAAAACAAAAAGAGACCTAATTGGTTGAAGTCAACTCTTGTAGATGCAGAAGGGCATGG
AGCAGCCAAAGGAACACTCAAGGAAAGTAAGAAGCCCAAAAGATATTCAAGGTATGCAGCTT
ATATGACAAAGTTAATAGAAGCAGAACCATCCACCTTTGAAAAAGTTGTCAAACATCAAGAAT
GGAAAGATGCCATGAATGAAGAATATCAATCAATAATGAAAAATGGAGTTTGGGA
c53_g1_i1 Copia-1_PAb-I LTR/Copia RNaseH 8E − 19 TGCAACAATCATAGTTGCATCAAAGCTCTCTGAGAATCCAGTGTTTCATGATAGGTCGAAGCA
TATTGATATTCGGCGTCACTTTGTCAGAGACTGTGTCCAACGAGGAGTTGTACAGTTGAGCTA
CACTCCTACAGGAGAACATGCGGTAGACATCCTTACCAAGGCCCTTGGAAGAACAAAGTTCAG
ATATTTCAGGGAGAAGATGGGGATGGTAAAAATCCATTTCAGTAGCAGAAATGGA
c533_g1_i1 Copia-30_ECa-I LTR/Copia Reverse transcriptase 3E − 12 AAGTATGTAGATTAGTTAAAGCACTCTATGAATTGAAACAAGCTCCTCGAGCTTGGTACATGA
AAATTGATCAGTACCTAATAGATCATGGCTTTCAGCGAAGCCCATCTGA
c543_g1_i1 RT_GB LTR/Copia Reverse transcriptase 2E − 08 CATTTTCAATGGCTTCATACAGGAGGAGGTGTACATTGAGCAGCCACAGAGCTTTGAGGTGCA
TGGAAGGAGTCCCATGTGTGCAGACTGAAGAAGGCCCTTTATGGCCTGAAGCAAGCTCCCAG
AGTTGGTACTCCAGGATAGATACATACTTGCAGGGGATGGTTTCACAAAGAGTGAGGCAGAT
CCGAACCTTTACCTTATTGTGATAGG
c569_g1_i1 Copia-17_PTa-I LTR/Copia Integrase 2E − 05 GGACTGCCATTATTTCTTGGGGCAGAGGCATGCCACAATGTAGTCTTTCAACAGAAACAAGAG
TCCACATAAGGTGCTTGGACGAGTTACACCAAAGGAGGTATTCACCGACAAGAAGCCAAATA
TTTCTCACTTTTGGATTTTGGCAGTTTATTTTACTACCACGTGCCTTTAGAGAGTTGGGGGAAG
CTAGAGCCTACAGTAGAAAAAGGCATTTTCATGTGCTACAATGAGACATCCAAGCATATAGG
GTGTAC
c575_g1_i1 Copia-27_PAb-I LTR/Copia Reverse transcriptase 3E − 06 AATTATGTATGGGAAGTGGTTCCAAGACCCCAATGTAAATCTGTTGTGTCTTCTAAATGGTTG
TATAAATTAAACATGGTGTTGATGGCAGTATTGAAAATATAAAGCTAGATTTGTGGCCAGAAG
GTTCTCTCAAAAGAGGGAATAGACTATGATGAAATCTCTGCCCTATTGCATGTTATACAACCA
TCTGATCTAT
c591_g1_i1 Copia-12_PAb-I LTR/Copia Integrase 8E − 17 TTTGACCGAGGGTCTTCCAAAGTTTCTGTGGGGAGAAGCTGCAAATACTGCTGTGTACATTCA
AAACCGATGCCCTCATTCCGCTTTGGACTCCAAAACTCCCGAAGAGGTTTTCTCTGGTAAGAA
ACCTAATGTCTTCACATTTTAGAATTTTTGGATGTCCTGTCTATTTTCATGTGCCGAAAGAAAAG
AGAAGTAAGCTGGATGCTACTGGGAAGAAAGGAATGTTTGTGGGCTACAGTGAGACTTCTAA
GCATATAGAGTCTATGTACCTGGTCAAAGGGAAGTAGAGATAAGCCATGATGTCACTTTTGAC
GAAGATGCTTCCCTGAAGAAA
c600_g1_i1 Copia-25_PAb-I LTR/Copia RNaseH 2E − 13 TTGCAATCCAAGAGGTATTTCCTTTCCCAGTCCAAGTATGCTTGTGATATTCTTCGTCATTTTCA
CATGGAAGACTGTAAGCCAGCCCCTTCTCCCTTTCAGTCTGGAGTCAAACTTTCAGTCTCTTGT
ACTTCTCCTGAAGTTGATGCTACCTTATACCGTCAACTTGTAGGAAAACTTTTGTATCTAACCC
ATACTCGTCCTGACCTTTCCTTTGTTGTTGGCCTTGTTGCTCGTTTTATGCAAAACCCCCGTGAA
AGTCATTGGAAAGCAGCTAAAAGAATACTTCGTTATGTTCGAGGTACAGTACAGTTTGGGATT
CATTACAGTGCCAAAGCAGCTCCTCTGTTAGTTGGTTTCACTGATTCTGATTGGGTTGGTGACC
CTGATGATCAAAGTCTACAACAAGTTATGTCTTCACTCTTGGTTTTTGGACCTATTACATGGGC
TTGCAGGAAACAAAGTTGTCATTTCTCTTTCTTCAGCAAACCAAATGTATCGTGGCACCATTGA
AGTTAGTAAGGAAGACCTGTGGCTTCGTCAGACCTATCAGAGTTGGTTTTAGCAGCA
c616_g1_i1 Copia-13_PAb-I LTR/Copia Reverse transcriptase 9E − 44 TGATGGGAGTGCTGAAAGTTTAAGGCAAGATTTGTTGCCCGTGGCTTCTCTCAAAGGAAGGA
ATTGACTATGACGATATATTTGCACCTGTGGCTCGATATACCACCATCCGATCCATCATAACCC
TTGCTTCTACGCAAGGATGGAGTCTTCATCAGATGGATGTCAAGACCGCTTTTCTGCATGGTGC
AATAAAGGAAGAGGTGTATGTAGAACAACCTCTGGGATTTGAAGTTCAAGATCGAGACACTT
ATGTCTGCAGGTTGAAGAAAGCCCTCTATGGGTTAAAGCAAGCACCCAGAGCTTGGTATGAA
AGGATGGATAGTTACTTGATGAAGCTGGGCTTCACTCGAAGCAATGCTGATCCAAACCTTTAC
TTTAA
c682_g1_i1 Copia-17_PTa-I LTR/Copia GAG 5E − 06 AGGGAAGAATGTTGACAAGTCTAAAGTGAGATGCTTTAATTGTCACGAGATGGGACATTATG
TGACTAATTTCCCATCGAAGAATTCCAAGAAGGGATCCTCGAAAGGATCTTAAGGTGAGGCAT
TAGCTCTTAGTTCGAAATGGACTTTACCCTCATCGCATGCATGGTGTCGTCGATGGTGAATTGT
GTTTTGTATCTTGACAGTGGAGCCTCATTCCACATGATTGGTG
c726_g1_i1 Copia-28_PAb-I LTR/Copia Reverse transcriptase/RNaseH 0.058/0.097 GAATTTGACATGAAGGACCTTGGTTGATGCATTACTATTTGGGACTGGTAGTTTGGCAAGAAC
CTAATGAAGTCTACTTAGCTCAAGGAAGTATGTGTTCGAGATATTGAAGAAGTTCGACATGAT
GGACTGTAAACCAATGACCACTCCAATGATTACTAATGTGAAGAAACTAAGAAGTTCTGAATC
AAGCCCTATGGATCCTTCCAAATATAGAAAACTCATTGGTTCACTAATGTATTTAGTGAATACT
AGGCC
c755_g1_i1 Copia-15_PAb-I LTR/Copia Integrase 2E − 12 TACATTCCACAAATAGAATGGAGTGGTTGAAAGTTGGAACTGCACTAGCAGTAAGATGGCCA
GTTGTAATGTTATAGAAAAGTGTGTTCCAAACAAGTTTCGGGCTAATTCAGTGTTCACAACAC
TACACATGCTGTATAGATCTCCAATGATGGCAGTGATAGAAAAGACTTGAAAGGAATTGTGGT
CTAGAAGAAAGTCCAAAGTCAATCATCTTAAAGTCTTTGGTTCTATTGCTACATTCG
c820_g1_i1 Copia-28_PAb-I LTR/Copia Integrase 0.023 TATGTCCATGTGCCAAAGGAGAAGCGAAAGAAGTTGGAATCGACAAGCATCAAGTATATTTG
TTGGATATAGTCTTTCCTCAAAAGCTTATAGAATCTACATAAAGGAGGGAAGATACATTGAAG
TAAGCAGGGATGTCATATTTGATGAGAATCAAGCTTACAAGAAAATCAAAGGATATTCCTAAT
GATTCCGATGACGAAGA
c832_g1_i1 Copia-20_PAb-I LTR/Copia RNaseH 0.013 GATCCCACTATGTATAGGAAGTTTATTGGATCCTTGCTGTACCTGGTTAACACCGAGGCAGAT
ATTTCCTTTGTAGTGAGCACCCTAAGCTAGTTTATGTTGAGCCAAGGCATGGACATTGGTTGC
AGTTAAACATGTATTGAGGTACCTGCATGGTACAATTGGATATGGTCTTAAATATGTCTAAGT
GGTGAAGTGAGGTTATAGGGATATGCCAATTCTGATTGGGTTGGGATCATGGT
c86_g1_i1 Copia-20_PAb-I LTR/Copia Integrase 9E − 05 TACATGACAATGACAACTTGTGTGAGCTATGACACAGGAGGTTGGGACACCTACACTACATG
GCATTATAAATCTCGAGGGAGATTGCCATTGGTCTCCCAAATTTCAATATTAAGTAATAGGGC
ATGTGTAGAGGTTGTGCACTTTACAAGAGTGCCAAAGCTCCTTTTCGAGCGACGAGAGTATGT
CCA
c905_g1_i1 Copia-28_PAb-I LTR/Copia Reverse transcriptase 9E − 06 GATCAGAACCTTTATTTAAGGTTAAAATGATAAATCTCTCATATTGGTACTTTATATGGACGAC
CTCTTTTGACAGGTGCAAACCTCTCATTACAATGTAAGAGAGAGTTGGCTTCTAAATTTGAGAT
GAATGACCTAACACTGATGCACTACTTCCTAAAGTTGGAGGTCTGGCAAAGCCAAGAAAATTT
TCCTATCTCAAAGAAATATGTTGTGAAATATTGGAAAGATTTGGAATGGTGGACTGCAACCCT
ATGACTACCCCAATAG
c968_g1_i1 Copia-4_PAb-I LTR/Copia Integrase 8E − 27 CTCATTCATTCAGATTTATGCGGTACAATGCATGTTCCTTTTGCAAATGGAAATAAATATATGA
TGACATTTATTGATGACTACACCAGAATGTGTTGGGTTTATTTATTGAAGAACAAATCTGATAC
TTTTCAAACATTCAAGAACTTTCATACATGAATTGAAAATGATGCACAATCCCATATTGGCTCT
ATTCACACTGATAATGGAAAAGAATACACTTCAAATGAATTTGAAA
c97_g1_i1 Copia-4_PAb-I LTR/Copia Integrase 6E − 25 TTTCATGCATTGATTGAAAATGATGCTTAATCTCATATTGGTTCTATTCGTACTGATAATGGAA
AAGAATACACTTCAAATGAATTTGAAAACTATCTTCGCCAACATGGGATCAAACATCAAACAA
TTGTACCTTATAATCCCCAACAGAATGGTGTAGCTGAAAGAATGAATAGGACAATCTTAAATA
TGGTACGATCCATGCTCTTCTTCAAAATGTAAAGATAAAGTTTTGGG
c1375_g1_i1 Copia-28_PAb-I LTR/Copia RNaseH_Copia 1E − 11 TTGATGTTCTTAGTGAACACCCGTCCGGACATATGTTTTGCAGTGAATACTTTGAGTCAACAGA
TGGTTGAGCCTCATCATTTTCACTGGGTTGGTGCCAAGAATCTTTTGAGATATCTTCGGGGCAC
GATAAACCATGGGCTGAGATACACTGCCGGGAGTGTGATACTCCGGGGATATACTGATGCCG
ATTGGGCTGGCAGTGTGGTGGATCGTAAGAGCACATCTGGATGCTGTTTCAATCTTGGTTTCT
GCTTTCGATCTCATGGATGAGCAGGAAGCAGAAG
c1146_g1_i1 Copia-20_PAb-I LTR/Copia Integrase 1E − 58 AGTAGTGACAGCAGAGCGACTGGGATACTTGATTTGATTCATTCTGATGTGAGCGGTCGGATG
TCTCATGTTTCCTTGAGTGGATATGAGTACTATGTTTTATTCATTGATGATCACTCCAGGAGGA
CCTGGATTTTTTTCTTGAAGACCAAGAGTGAGGTCTTCAAGCGGTTTCAGGAGTTCAGAGCTCT
TGTGGAGACTCAGACAGGTCGAAAGATCAAGTCCCTGAGGTCGGACAATGGAGGAGAGTACA
CCCTTGGAGAGTTTGTTGACTATTGTGCGGAGGCAGGCATTAGGAGGGAGTTTACTGTTCCTT
ACAACCCCCAGCAGAATGGGGTTGCGGAGAGGAAGAACAGATCCATCATAGGGCTGCCAAA
GCCATGTTACATGATCAGGGGTTGCCATTGTTCTTGTGGGCAGAGGCCTGCAACACAGCTGTT
TACTTGCAGAACAGGAGTCCGCATCGTGCCTTGGGGCACATGACTCTGGAGGAGGCTTTCTCT
GGGAAGAAGCCTGATCTTGGTCATCTTCATATCTTTGGATGCATTACATACTCCTATATACCCA
AGGAGAAGAGGACCAAACTAGAGCCCACCGCAGAGAAGGGTATCTTTGTGGGCTACAGTGA
GACCTCAAAGGCCTTTCGGATTTACATTCCTGCACAGAGGAGAGTTGTTGTCAGGCGGGATGT
GAAGTTCGAGGAGGACAGGGCCTT
c238_g1_i1 Copia-4_PAb-I LTR/Copia Reverse transcriptase/RNaseH 3E − 44/2e − 44 ATGATTGTGAATTGAACTTGTCTACAGATTTTGAACCAACTTCCTTCAAAGAAGCTGCTTCTCA
TGATGAATGGAAAGAAGCGATGCAAAGGAGTATGATGCCCTCATAAAGAATGGCACTTGGA
AGCTGGTTGATCCTCCATTTGGAACCAAACCAATTGGCTGCAAGTGGGTCTACAAGAACAAAT
ACAAAGTTGATGGCTCACTTGACAAGCACAAAGCTAGGCTTGTGGCAAAAGGTTTTGCACAGA
AGGAAGGGGTCGATTATGAGGAAACTTTGCCCCACAGCAAAATGGGCCACCATCCGGACACT
CTTTGCACTAGCTGCTCAGAACGGTTGGAAAGTCCATCAAATGGATGTAAAAACTGCATTCTT
GAATGGAGATCTAAAAGAGAATGTTTTATGTCCCAGCCTGAAGGATTTGCTGTGAAAGGACA
TGAACACAAAGTATGCAAACTTGTGAAGTCCTTGTATGGCCTCAAACAAGCACCACGAGCCTG
GTATGAAAAACTAACTGAGCATCTTCTGAAACTCAACTTCAAACATTTTGATCTTGATGATGCA
ACTTTATTTGTCAAGAAAGTTGGCAAAACAGTTGTATATCTTGTGGTATATGTAGATGATCTTT
TAATGACAGGGAACAATGAAAGCTATATTGCATCCATAAAGAAAGAATTAGGAAAATTTTTG
AAATGACTGATTTGGGCTATGTTCATTACTATCTTGGCATTGAAGTAACCCAACATCCAAAATC
CATATTTCTTTCTCAAAAGAAATACATTGGAGATTTGTTAAACAGATTTGGCATGACAGAGTG
CAATCCTCTTTCTACTCCAATGGAACAAAACTTGAAGCTCACATCTATTGAAGGAAAGGAATTT
GAGGATGCAACAAAGTATAGACAGCTTGTAGGAAGTCTCATCTACTCACTACTACCAGACCAG
ACATTTCATTTGCTGTTGGAATCCTCTCCAGGTTCATGCAAAAGCCTTGTGAGGGACATTGGTC
TGCTGCAAAAAGAGTTCTAAGGTACTTGAAGGGAACTCAAGACTTTGGAATCAAGTATACACA
GGTGGACGACTTCAGCTTGATTGGATACTCTGATTCAGACTTCGATGGAGACAAAGAAACTGG
GGTATCTACTTCAGGATATGCTATGAGTCTTGGATCAGGAGCTGTCTCCTGGAGATCACGCAA
ACAATCAGTTCCAGCAGATTCCACAACAGAAGCAGAATACGTGGCAGCAGCTGAAGCAACGA
AAGAAATTGTGTGGCTCAGGAAAATCATTGAAGATTGCCAAGGAAAACAAATACAATCAACT
CCACTCATGATTGACAACACCTCGGCAATAAAGTTGGCCAAGAACCCAAAGTTCCATGATCGA
ACGAAGCACATCAATACAAAATATCATCTGATCCGACATCACGTTGAGGCCAAAACAATCCAT
CTCCGCCATTGTTCCACAAACGAGCAAATTGCAGACATCTTCACCAAAGCGCTTGGAAGAGAA
AAGCTTGAAAGATTCAGAACGATGCTTGGACTCACCAACATCCCTTCAGATTAAGGGGGGAAT
GTTGACACCTAATCCG
c42_g1_i1 Copia-27_PAb-I LTR/Copia RNaseH 3E − 40 CTTTGGTTTGGAGGTGTGGCGAGGAGAGGGCATTCTTCCTGGGCAGGGAAGTATATTGTGGA
CATCCTTGGCAGATTCCACATGGAGGATTGTAAACCCATGTCGACACCGATGATCACCAACTG
GAAGAAGCTTCATGCTTCGGATTCCGAGTTGGTGGATCCCACATTGTACAGGCAGCTGATTGG
TTCCTTGATGTATTTGGTCAACACTAGACCAAATATCTGTTTTGCAGTCAACACGATGAGTCAG
TTTATGTGTGAGCTAGGAAGGTTCATGGGTGGCTGCAAACACGATTTGCGGTACTTGCAGGGA
CAGTGGATTATGGTCTGGACTACAGGCAGGGAGATGGAGTGAGATTGGCAGGGTACACTGA
TTCTGATTGGGCAGGTTGTGCTTCTGATAGGAAGAGCACTTCAGGTGTTGTTTGGTTGGTTCA
GCAGTAGTGTCATGGTTCAGCCGGAAGCAGCAGTCAGTAGCACTGAGTTCAGCGGAAGCAGA
GTATATGGCAACCAGTCTAGCTAGTTGTGAGGCTATCTGGCTTCGCAAGATGTTGTTTGGCTT
ATTTGGTCAGCCGTTGAGACCTTCAGTGATTTACTGTGATAATCAGAGTTGCATTAAACTCACG
GAGAATCCAGTATTTCATGACAGGTCAAAGCATATCGGGATCAGATATCATTTCATCAGAGAC
TATGTTCAGAAGGGAGTTGTGAAGCTTGATTATATTTCCACTGATGAGCTGGTTGCAGATATT
CTTACCAAAGCCTTACCACGGGGCAAGCATGTCTACTTCAGGGAGAAGATGGGTGTGGTGAG
GAACACCTTCCTCGGTAAGAGGG
c61_g1_i1 Copia-4_PAb-I LTR/Copia Integrase 1E − 23 GATCCATGCTTTTCTTCAAAAATGTAAAGATAATGTTTTGGCTGATGCTGTTCTATGTGCTGCA
TATATAAAAAATAGATGTCCATCTAATGCTATAAGAAACAAGACTCCATATGAAATGTGGTAT
GGACATGTTCCTTCGGTAAAGCATCGCAGGGTCTTTGGTTCCACCTGTTATGCCTTGATACCAA
AGGTACATAGAAACAAACTTGGTGCTAGAAGTCATAAGTGTATCTTCCTGGAGTATTCAAACA
CATCCAAAGCATACCGCCTTTATGATGAAGTAAATAAAAAGTTTGTTGTATCTAGAGATGTAA
TTTTCTTGAATCATCCAAATCTGACAGTGTTGTTGAGCGGCAACTTGATCGCTTGGATAGATTC
c1151_g1_i1 Copia-25_PAb-I LTR/Copia Integrase 7E − 35 TTCTTTAAAAAACTCCAAGAGCGTAAGTATATTTAATCAACATTTTAGGCCTTCAAAGCCTTTG
TTGAAAAAACAATCTGGACATCAAATTCTTAAGCTAAGAACTGATAATGGTGGAGAATATGTT
AAAATGCATTCATCACCTTTTGCACCGAAAATGGAATTCAAATGCAACATACTGTTCCATACAC
TCCACAACAAAATGGTGTAGTTGAAAGGAAGAATCGCACCTTAAAGGAAATGGCCTAATTGT
ATGCTTCAATCTAAAGGACTTAGTCTTAGTTATTGGGCCGAAGCAATTAATTGTGCAAATTATA
TAATCAATCGCACTCCTACTAAGGTTTTAAAGAATATCACTCCAGAAGAAGCTTGGAGTTCCAT
TAAACCAGATGTAAGTCACTTTCGTGTTTTTGGAAGTGAAGCATGGGCCCATATTCCAGATGA
GAAGCATAAAGCTTTAGAACCTAAGAGTGAGAAATGTACTTTTGTTGGATATTCTGAAGATGT
CAAAGGTTATAGACTTATTCCATTTAAGTCCAAAATGTTATCATTAGAAGAGATGTAAAGTTTG
TTGAAAATATATCGGCCTGCGAGCCTAGTTCGGCGGATGTGCCACCTCTTCCTATCTCTTCTATC
TTTGAGAATATTTCTTCTTCTGATGATGAAAGCGAGGATGATAATCTCCCACCTTCTCAGGATC
CTCCTTCAG
c93_g1_i1 Copia-25_PAb-I LTR/Copia RNaseH 9E − 47 CCTTGTTCTTTTTCTTGCTGTTTCTTTCAAATTGGAAAGTCTATCAGATGATGTTAAATCTGCCT
TTTTGCATGGAGATCTT
c1299_g1_i1 PtCumberland_I LTR Reverse transcriptase 1E − 26 AAGGCACTCTATGGTCTTAAAACAGGCTCCAAAGGGCTTGGTATTATCGTCTAGACAAATACC
TCCATCAACAAGGTTTTTCGAAAGGATCAGCAGATAGCAATCTATATATAAAAATTGATAATG
ATAAATTGCTAATACTTGTCGTATATGTTGACGAGATCATCTTTGGTAGCAATGAAGAAGCCAT
GAGTCAAAACTTTGCTTTGGTGATGCAGAAAGAATTTGAAATGTCCTTGCTTAGTGAGCTAAC
ATATTTTCTTGGTTTACAAGTCCA
c443_g1_i1 PtCumberland_I LTR Integrase 2E − 06 TTTATATTGTTCATTGATGATTTTCCAGAATGTGTTGGATAGTCTTCTAAAGCATAAAGATGAA
GCATTTGAAAAGTTCAAAGCCTTCAAAGCTTTGGTTGAAAATGAATTAGATCGCAAATCAAAT
GCCTCAGATCTGATCGAGGAGGGAATTTACCTCGGATGAATTCTTTGACTTTTGTGAACAACA
TGGAATAAAAGGCAGTTCTCCACTGCAAGGACTCCTCAGCAAAATGGAGTGGTAGAAAGG
c583_g1_i1 PtAppalachian_I LTR Protease 0.16 TATGAATCAAGGCCCGTGCTGTTATTATTACATTGGGAAATAAGTTGTTCAGGATACCAGAGG
TAGCACCACCTGCCGCCATCTCTTTAATTACTGCAAACAATGCAGTAAGATCATTTCCAAAA
c583_g1_i1_rev PtAppalachian_I LTR Reverse transcriptase 8E − 25 GGGACGTGGAGACTCTGTATTGACTATCGGGCGCTGAACAAGATCACTGTCCGTAATAGGTA
CCCGATCCCGCGGATTGATGACCTCCTAGACCAACTAAAGGGGGCGAAATATTTCAGCAAGAT
CGATCTGAAGTCAGGATATCACCTGGT
c584_g1_i1 hAT-5_PTr DNA/hAT hAT polyprotein 5E − 16 TTTATTTCATTATTTTGTTGTAGATCTTTGGTGGCGAAGCTATGGTGCAAGGGTACCAAATTTG
CAAAATTTGGCTATACGAATCTTGAGTCAAACATGTAGCTCTTCAGGGTGTGAGCGCAATTGG
AGTGTATTTGAGAAAATACACGCCAAAAAACGCAACAG
c843_g1_i1 SHATAG_MT DNA/hAT hAT family C-terminal dimerisation region 8.2e − 05 AATGGTGGGAGCCTTTGGTGGCCAGTGCCTCAATTGCAAAAGTTTGCAATTCGTATTTTGAGT
CAAACTTGCAGTGCATCTGGGTGTGAGCGCAATTGGTCTGTCTTTGAGAGGATTCACACAAAG
AAGAGAA

A 68 of that were retroelements (Table 2). Most of elements represented by Gypsy (16 contigs) and Copia (48 contigs). In 4 cases retroelements specific to Pinus taeda were identified. It is worth nothing that in two cases DNA-transposons were also identified. In general this data comply previously published where both Gypsy and Copia were shown to be dominant [3].

Table 2.

Classification of identified transposons.

Repeat class Number of transposons
Transposable element 70
 DNA transposon 2
 hAT 2
 LTR retrotransposon 68
 Copia 48
 Gypsy 16
 PtAppalachian 4

Studies of contigs showed that in most of cases fragments of integrase (24), reverse transcriptase (22) and RNaseH (15) were identified (Table 3). Results of the study may be of interest for coniferous breeding and genetic specialists.

Table 3.

Classification of identified retroelements.

Genes identified in contig Number of cases
Total number 70
Integrase 24
Reverse transcriptase 22
RNaseH 15
Protease 4
hAT polyprotein 3
GAG 2

Funding

This study was funded by Joint Grant of Russian (RFBR No. 15-54-04004) and Byelorussian (BRFFR No. B15RM-007) Foundations for Fundamental Research.

Conflict of interest

The authors declare that they have no competing interests.

Acknowledgements

The authors acknowledged the Russian and Byelorussian Foundations for Fundamental Research for the supporting of the study.

References

  • 1.Voytas D.F., Cummings M.P., Koniczny A., Ausubel F.M., Rodermel S.R. Copia-like retrotransposons are ubiquitous among plants. PNAS. 1992;89:7124–7128. doi: 10.1073/pnas.89.15.7124. USA. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Suoniemi A., Tanskanen J., Schulman A.H. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 1998;13:699–705. doi: 10.1046/j.1365-313x.1998.00071.x. [DOI] [PubMed] [Google Scholar]
  • 3.Nystedt B., Street N.R., Wetterbom A., Zuccolo A., Lin Y.-C., Scofield D.G. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–584. doi: 10.1038/nature12211. [DOI] [PubMed] [Google Scholar]
  • 4.Schulman A.H., Flavell A.J., Ellis T.H. The application of LTR retrotransposons as molecular markers in plants. Methods Mol. Biol. 2004;260:145–173. doi: 10.1385/1-59259-755-6:145. [DOI] [PubMed] [Google Scholar]
  • 5.Vandenbussche M., Gerats T. TE-based mutagenesis systems in plants. Methods Mol. Biol. 2004;260:115–127. doi: 10.1385/1-59259-755-6:115. [DOI] [PubMed] [Google Scholar]
  • 6.Noor M.A., Chang A.S. Evolutionary genetics: jumping into a new species. Curr. Biol. 2006;16 doi: 10.1016/j.cub.2006.09.022. (R890-2) [DOI] [PubMed] [Google Scholar]
  • 7.Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitive elements in the genome sequences. Curr. Protoc. Bioinformatics. 2009;4:1–4. doi: 10.1002/0471250953.bi0410s25. [DOI] [PubMed] [Google Scholar]
  • 8.Kohany O., Gentles A.J., Hankus L., Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinf. 2006;7:474–483. doi: 10.1186/1471-2105-7-474. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genomics Data are provided here courtesy of Elsevier

RESOURCES