Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(8):3014–3017. doi: 10.1073/pnas.87.8.3014

Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance.

S J Foote 1, D Galatis 1, A F Cowman 1
PMCID: PMC53824  PMID: 2183221

Abstract

Cycloguanil, the active metabolite of the antimalarial drug proguanil, is an inhibitor of dihydrofolate reductase as is another antimalarial, pyrimethamine. Its use has been limited by the rapid development of resistance by parasites around the world. We have determined the cycloguanil- and pyrimethamine-sensitivity status of 10 isolates of Plasmodium falciparum and have sequenced in all these isolates the dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) portion of the DHFR-thymidylate synthase (TS; 5,10-methylenetetrahydrofolate: dUMP C-methyltransferase, EC 2.1.1.45) gene. Instead of the known serine-to-asparagine change at position 108 that is important in pyrimethamine resistance, a serine-to-threonine change at the same position is found in cycloguanil-resistant isolates along with an alanine-to-valine change at position 16. We conclude that pyrimethamine and cycloguanil resistance most commonly involve alternative mutations at the same site. However, we also have identified a parasite with a unique set of changes that results in resistance to both drugs.

Full text

PDF
3014

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHARLES L. J. Field trials with chlorproguanil in the prophylaxis of malaria in Ghana. Bull World Health Organ. 1961;24:457–463. [PMC free article] [PubMed] [Google Scholar]
  2. Chen G. X., Mueller C., Wendlinger M., Zolg J. W. Kinetic and molecular properties of the dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant clones of the human malaria parasite Plasmodium falciparum. Mol Pharmacol. 1987 Apr;31(4):430–437. [PubMed] [Google Scholar]
  3. Cowman A. F., Lew A. M. Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Mol Cell Biol. 1989 Nov;9(11):5182–5188. doi: 10.1128/mcb.9.11.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cowman A. F., Morry M. J., Biggs B. A., Cross G. A., Foote S. J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9109–9113. doi: 10.1073/pnas.85.23.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferone R., Burchall J. J., Hitchings G. H. Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol. 1969 Jan;5(1):49–59. [PubMed] [Google Scholar]
  6. Foote S. J., Thompson J. K., Cowman A. F., Kemp D. J. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell. 1989 Jun 16;57(6):921–930. doi: 10.1016/0092-8674(89)90330-9. [DOI] [PubMed] [Google Scholar]
  7. Inselburg J., Bzik D. J., Horii T. Pyrimethamine resistant Plasmodium falciparum: overproduction of dihydrofolate reductase by a gene duplication. Mol Biochem Parasitol. 1987 Nov;26(1-2):121–134. doi: 10.1016/0166-6851(87)90136-8. [DOI] [PubMed] [Google Scholar]
  8. McCutchan T. F., Welsh J. A., Dame J. B., Quakyi I. A., Graves P. M., Drake J. C., Allegra C. J. Mechanism of pyrimethamine resistance in recent isolates of Plasmodium falciparum. Antimicrob Agents Chemother. 1984 Nov;26(5):656–659. doi: 10.1128/aac.26.5.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peterson D. S., Milhous W. K., Wellems T. E. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3018–3022. doi: 10.1073/pnas.87.8.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Peterson D. S., Walliker D., Wellems T. E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9114–9118. doi: 10.1073/pnas.85.23.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schapira A. Concomitant resistance to pyrimethamine and cycloguanil of chloroquine-resistant falciparum malaria from East Africa: an in vitro study of 12 isolates. Trans R Soc Trop Med Hyg. 1984;78(3):359–362. doi: 10.1016/0035-9203(84)90122-6. [DOI] [PubMed] [Google Scholar]
  14. Scott H. V., Rieckmann K. H., O'Sullivan W. J. Synergistic antimalarial activity of dapsone/dihydrofolate reductase inhibitors and the interaction of antifol, antipyrimidine and antipurine combinations against Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1987;81(5):715–721. doi: 10.1016/0035-9203(87)90004-6. [DOI] [PubMed] [Google Scholar]
  15. Sixsmith D. G., Watkins W. M., Chulay J. D., Spencer H. C. In vitro antimalarial activity of tetrahydrofolate dehydrogenase inhibitors. Am J Trop Med Hyg. 1984 Sep;33(5):772–776. doi: 10.4269/ajtmh.1984.33.772. [DOI] [PubMed] [Google Scholar]
  16. Snewin V. A., England S. M., Sims P. F., Hyde J. E. Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine. Gene. 1989 Mar 15;76(1):41–52. doi: 10.1016/0378-1119(89)90006-1. [DOI] [PubMed] [Google Scholar]
  17. Watkins W. M., Howells R. E., Brandling-Bennett A. D., Koech D. K. In vitro susceptibility of Plasmodium falciparum isolates from Jilore, Kenya, to antimalarial drugs. Am J Trop Med Hyg. 1987 Nov;37(3):445–451. doi: 10.4269/ajtmh.1987.37.445. [DOI] [PubMed] [Google Scholar]
  18. Watkins W. M., Sixsmith D. G., Chulay J. D. The activity of proguanil and its metabolites, cycloguanil and p-chlorophenylbiguanide, against Plasmodium falciparum in vitro. Ann Trop Med Parasitol. 1984 Jun;78(3):273–278. doi: 10.1080/00034983.1984.11811816. [DOI] [PubMed] [Google Scholar]
  19. Weber J. L. Analysis of sequences from the extremely A + T-rich genome of Plasmodium falciparum. Gene. 1987;52(1):103–109. doi: 10.1016/0378-1119(87)90399-4. [DOI] [PubMed] [Google Scholar]
  20. Zolg J. W., Plitt J. R., Chen G. X., Palmer S. Point mutations in the dihydrofolate reductase-thymidylate synthase gene as the molecular basis for pyrimethamine resistance in Plasmodium falciparum. Mol Biochem Parasitol. 1989 Oct;36(3):253–262. doi: 10.1016/0166-6851(89)90173-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES