Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 10;73(Pt 4):481–483. doi: 10.1107/S2056989017003498

Synthesis and crystal structure of bis­(μ-2-methyl­benzene­thiol­ato-κ2 S:S)bis­[meth­yl(2-methyl­benzene­thiol­ato-κS)indium(III)]

Glen G Briand a,*, Andreas Decken b, Courtney M Dickie a, Gregory MacNeil a
PMCID: PMC5382603  PMID: 28435702

The dinuclear compound, [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], was prepared from the 1:2 reaction of Me3In and 2-MeC6H4SH in toluene. Its crystal structure exhibits a four-membered In2S2 ring core via bridging (2-MeC6H4S) groups. The dimeric units are further associated into a one-dimensional polymeric structure via inter­molecular In⋯S contacts.

Keywords: crystal structure, indium, thiol­ate, dinuclear, coordination polymer

Abstract

The dinuclear title compound, [In2(CH3)2(C7H7S)4] or [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], was prepared from the 1:2 reaction of Me3In and 2-MeC6H4SH in toluene. Its crystal structure exhibits a four-membered In2S2 ring core via bridging (2-MeC6H4S) groups. The dimeric units are further associated into a one-dimensional polymeric structure extending parallel to the a axis via inter­molecular In⋯S contacts. The In atoms are then in distorted trigonal–bipyramidal CS4 bonding environments.

Chemical context  

Methyl­indium di­thiol­ates [MeIn(S2 R)] have been shown to be useful compounds for the ring-opening polymerization (ROP) of cyclic esters to produce biodegradable polymers (Allan et al., 2013; Briand et al., 2016). These compounds are prepared from the stoichiometric reaction of InMe3 with polydentate amino/oxo-di­thiols. However, the 1:2 reaction of triorganyl­indium (R 3In) with simple mono­thiols (R′SH) often results in isolation of the diorganylindium thiol­ate R 2In(SR′) (Hoffmann, 1988; Nomura et al., 1989). The favourable formation of the organylindium di­thiol­ate RIn(SR′)2 was reported to be determined by the steric bulk of the thiol­ate ligand and the R-In group, and the acidity of the thiol reactant. The 1:2 reaction of nBu3In or iBu3In and PhSH afforded the di­thiol­ate RIn(SPh)2 (R = nBu, iBu) as solids, although the compounds were poorly soluble in organic solvents, precluding crystallization. All compounds in these studies were primarily characterized by NMR. The only structurally characterized example of such a compound is [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh), which is prepared from the redox reaction of the indium(I) compound [(Me3Si)3CIn]4 and the di­sulfide (SPh)2 (Peppe et al., 2009). The 1:2 reaction of Me3In and 2-MeC6H4SH in toluene affords [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I), in high yield. The modest steric bulk afforded by the 2-MeC6H4 group moderates inter­molecular bonding and increases solubility in organic solvents without preventing formation of the RIn(SR′)2 species. The observation of only one signal for the MeIn and 2-MeC6H4S groups in the 1H NMR study suggests that the compound dissociates into MeIn(2-MeC6H4S)2 monomers in tetrahydrofuran solution.graphic file with name e-73-00481-scheme1.jpg

Structural commentary  

The asymmetric unit comprises the dinuclear compound, [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I) (Fig. 1). The two unique indium atoms are each bonded to a methyl carbon atom, and one terminal and one bridging (2-MeC6H4S) group, generating a nearly square-planar four-membered In2S2 ring core [S2—In1—S3 = 88.28 (6), In1—S2—In2 = 91.86 (6), S2—In2—S3 = 87.02 (6), In1—S3—In2 = 92.58 (7)°]. The In atoms are in distorted trigonal–pyramidal CS3 bonding environments [C1—In1—S1 = 127.3 (2), C1—In1—S2 = 113.1 (3), S1—In1—S2 = 114.66 (7), C1—In1—S3 = 105.7 (2), S1—In1—S3 = 96.94 (6), S2—In1—S3 = 88.28 (6), C2—In2—S3 = 118.2 (3), C2—In2—S4 = 124.1 (3), S3—In2—S4 = 115.00 (7), C2—In2—S2 = 102.4 (2), S2—In2—S3 = 87.02 (6), S2—In2—S4 = 95.87 (6)°]. Bond lengths and angles are similar at each indium atom.

Figure 1.

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Supra­molecular features  

The dimeric structures are further associated into one-dimensional polymers extending parallel to the a axis via inter­molecular In⋯S contacts [In1⋯S4(x − 1, y, z) = 3.091 (2), In2⋯S1(x + 1, y, z) = 2.920 (2) Å] (sum of metallic/van der Waals radii = 3.52 Å; Bondi, 1964) (Fig. 2). Such contacts are common for indium and other heavy main group metal chalcogenolates due to their large metal radii and potential for high coordination numbers (Briand et al., 2010, 2011, 2012; Appleton et al., 2011). This leads to the formation of insoluble materials for iBuIn(SPh)2 (Nomura et al., 1989). The steric bulk provided by the Me group of the (2-MeC6H4S) ligand is sufficient to moderate inter­molecular contacts and afford solubility in organic solvents (e.g. toluene and tetra­hydro­furan).

Figure 2.

Figure 2

Part of the crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z.]

Database survey  

The dinuclear structure of (I) is similar to that of [Me(MeO2CCH2CH2S)In-μ-(MeO2CCH2CH2S)2InMe(MeO2CCH2CH2S)] (Allan et al., 2013). However, the ester carbonyl oxygen atoms of the terminal MeO2CCH2CH2S groups occupy the coordination site trans to the axial bridging thiol­ate sulfur atom. This precludes inter­molecular In⋯S bonding and yields discrete dimeric units. The structure of (I) is also similar to that of the structure of dimeric [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh) (Peppe et al., 2009). However, the steric bulk of the (Me3Si)3C precludes further inter­molecular In⋯S bonding and the indium atoms are restricted to a four-coordinate distorted tetra­hedral bonding environment. Other reported methyl­indium di­thiol­ates employ polydentate di­thiol­ate ligands, some of which possess dimeric and trimeric structures (Briand et al., 2016).

Synthesis and crystallization  

2-Methyl­benzene­thiol (0.300 g, 2.42 mmol) in toluene (2 ml) was added dropwise to a stirred solution of InMe3 (0.193 g, 1.21 mmol) in toluene (5 ml). The solution was stirred for 18 h and concentrated in vacuo to 4 ml. After sitting at 296 K for 1 d, the solution was filtered to yield colourless, needle-like crystals of (I). Yield: 0.317 g (0.421 mmol, 70%). Analysis calculated for C30H34S4In2: C, 47.88; H, 4.55; N, 0.00. Found: C, 46.88; H, 4.55; N, <0.3. M.p 421–422 K.

FT—IR (cm−1): 672 s, 705 s, 741 s, 800 w, 846 w, 861 w, 939 w, 978 w, 1041 m, 1055 m, 1280 w, 1378 w, 1451 m, 1464 m, 1585 w, 2913 w, 3056 w. FT–Raman (cm−1): 121 vs, 158 s, 244 w, 322 m, 443 w, 508 s, 552 w, 675 w, 800 m, 1043 s, 1128 w, 1148 w, 1204 m, 1465 w, 1565 w, 1586 m, 2916 w, 3047 m. 1H NMR (200 MHz, thf-d 8, p.p.m.): δ = 0.23 [s, 3H, MeIn], 2.60 [s, 6H, (S-2-MeC6H4)], 7.06–7.11 [m, 4H, (S-2-MeC6 H 4)] 7.23–7.28 [m, 2H, (S-2-MeC6 H 4)], 7.62–7.66 [m, 2H, (S-2-MeC6 H 4)]. 13C{1H} NMR (101 MHz, thf-d 8, p.p.m.): δ = −5.1 (MeIn), 21.7 (S-2-MeC6H4), 124.1, 125.2, 129.4, 134.6, 138.4, 139.7 (S-2-MeC 6H4)].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included in calculated positions and refined using a riding model.

Table 1. Experimental details.

Crystal data
Chemical formula [In2(CH3)2(C7H7S)4]
M r 752.45
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 7.4441 (15), 14.625 (3), 14.074 (3)
β (°) 99.693 (3)
V3) 1510.4 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.82
Crystal size (mm) 0.45 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker SMART1000/P4
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a )
T min, T max 0.495, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 10442, 5591, 4742
R int 0.041
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.074, 1.04
No. of reflections 5591
No. of parameters 332
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −1.01
Absolute structure Flack (1983), 2079 Friedel pairs
Absolute structure parameter 0.41 (3)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 and SHELXTL (Sheldrick, 2008b ), SHELXL2013 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837sup1.cif

e-73-00481-sup1.cif (329.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837Isup2.hkl

e-73-00481-Isup2.hkl (444.6KB, hkl)

CCDC reference: 1535922

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[In2(CH3)2(C7H7S)4] F(000) = 752
Mr = 752.45 Dx = 1.655 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.4441 (15) Å Cell parameters from 5877 reflections
b = 14.625 (3) Å θ = 2.8–27.8°
c = 14.074 (3) Å µ = 1.82 mm1
β = 99.693 (3)° T = 173 K
V = 1510.4 (5) Å3 Rod, colourless
Z = 2 0.45 × 0.08 × 0.03 mm

Data collection

Bruker SMART1000/P4 diffractometer 5591 independent reflections
Radiation source: fine-focus sealed tube, K760 4742 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −9→9
Tmin = 0.495, Tmax = 0.956 k = −18→19
10442 measured reflections l = −18→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0276P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5591 reflections Δρmax = 0.49 e Å3
332 parameters Δρmin = −1.01 e Å3
1 restraint Absolute structure: Flack (1983), 2079 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.41 (3)

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
In1 0.60776 (7) 0.80291 (3) 0.26699 (4) 0.02518 (14)
In2 1.05764 (7) 0.69727 (3) 0.23677 (4) 0.02406 (14)
S1 0.4196 (2) 0.70588 (16) 0.35474 (14) 0.0268 (4)
S2 0.7227 (3) 0.72420 (11) 0.12869 (14) 0.0218 (4)
S3 0.9290 (3) 0.76607 (13) 0.37732 (15) 0.0232 (4)
S4 1.2193 (2) 0.80568 (17) 0.14747 (13) 0.0268 (4)
C1 0.5973 (11) 0.9472 (6) 0.2527 (7) 0.036 (2)
H1A 0.6958 0.9746 0.2988 0.054*
H1B 0.4796 0.9694 0.2656 0.054*
H1C 0.6115 0.9641 0.1870 0.054*
C2 1.0874 (11) 0.5515 (5) 0.2317 (7) 0.034 (2)
H2A 1.2104 0.5364 0.2206 0.051*
H2B 0.9975 0.5265 0.1792 0.051*
H2C 1.0678 0.5249 0.2931 0.051*
C3 0.4643 (10) 0.7328 (5) 0.4795 (6) 0.0235 (17)
C4 0.4170 (10) 0.6667 (5) 0.5433 (6) 0.0269 (18)
C5 0.4608 (11) 0.6852 (6) 0.6420 (6) 0.0346 (19)
H5 0.4308 0.6413 0.6865 0.042*
C6 0.5449 (11) 0.7639 (6) 0.6763 (6) 0.035 (2)
H6 0.5751 0.7736 0.7439 0.042*
C7 0.5863 (11) 0.8296 (5) 0.6137 (6) 0.034 (2)
H7 0.6436 0.8850 0.6376 0.040*
C8 0.5435 (10) 0.8145 (6) 0.5147 (5) 0.0297 (18)
H8 0.5687 0.8604 0.4711 0.036*
C9 0.3221 (13) 0.5794 (6) 0.5076 (6) 0.041 (2)
H9A 0.2848 0.5467 0.5618 0.061*
H9B 0.4054 0.5410 0.4780 0.061*
H9C 0.2143 0.5937 0.4597 0.061*
C10 0.6499 (9) 0.6072 (5) 0.1171 (5) 0.0196 (16)
C11 0.6429 (10) 0.5650 (5) 0.0265 (6) 0.0254 (17)
C12 0.6019 (10) 0.4720 (5) 0.0215 (6) 0.0307 (19)
H12 0.5984 0.4414 −0.0383 0.037*
C13 0.5667 (11) 0.4229 (5) 0.0989 (6) 0.035 (2)
H13 0.5361 0.3599 0.0918 0.042*
C14 0.5755 (11) 0.4651 (5) 0.1872 (6) 0.0305 (19)
H14 0.5540 0.4311 0.2417 0.037*
C15 0.6163 (11) 0.5583 (5) 0.1957 (6) 0.0285 (18)
H15 0.6208 0.5881 0.2560 0.034*
C16 0.6849 (12) 0.6168 (6) −0.0591 (6) 0.037 (2)
H16A 0.8122 0.6372 −0.0464 0.056*
H16B 0.6045 0.6701 −0.0708 0.056*
H16C 0.6656 0.5770 −0.1159 0.056*
C17 1.0334 (10) 0.8758 (5) 0.4071 (6) 0.0281 (18)
C18 1.0799 (11) 0.8983 (6) 0.5038 (7) 0.038 (2)
C19 1.1513 (12) 0.9872 (7) 0.5242 (8) 0.050 (3)
H19 1.1826 1.0054 0.5897 0.060*
C20 1.1768 (12) 1.0467 (7) 0.4554 (9) 0.058 (3)
H20 1.2259 1.1055 0.4727 0.070*
C21 1.1315 (12) 1.0226 (6) 0.3587 (8) 0.049 (3)
H21 1.1498 1.0646 0.3097 0.059*
C22 1.0589 (11) 0.9361 (5) 0.3345 (7) 0.037 (2)
H22 1.0272 0.9187 0.2688 0.044*
C23 1.0596 (12) 0.8356 (7) 0.5848 (6) 0.045 (2)
H23A 1.1387 0.7822 0.5831 0.068*
H23B 0.9325 0.8154 0.5782 0.068*
H23C 1.0941 0.8677 0.6462 0.068*
C24 1.1434 (10) 0.7751 (5) 0.0239 (6) 0.0267 (18)
C25 1.0177 (10) 0.8323 (5) −0.0341 (5) 0.0276 (18)
C26 0.9738 (11) 0.8081 (7) −0.1314 (6) 0.042 (2)
H26 0.8901 0.8452 −0.1730 0.050*
C27 1.0464 (13) 0.7330 (6) −0.1693 (6) 0.045 (2)
H27 1.0144 0.7192 −0.2360 0.054*
C28 1.1654 (12) 0.6781 (6) −0.1103 (7) 0.044 (2)
H28 1.2144 0.6253 −0.1359 0.053*
C29 1.2146 (10) 0.6990 (6) −0.0141 (6) 0.0334 (17)
H29 1.2980 0.6608 0.0263 0.040*
C30 0.9353 (11) 0.9151 (6) 0.0057 (7) 0.040 (2)
H30A 1.0317 0.9593 0.0289 0.060*
H30B 0.8745 0.8965 0.0593 0.060*
H30C 0.8462 0.9432 −0.0451 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
In1 0.0262 (3) 0.0223 (2) 0.0294 (3) −0.0009 (2) 0.0116 (2) −0.0015 (3)
In2 0.0220 (3) 0.0244 (3) 0.0273 (3) −0.0018 (2) 0.0085 (2) −0.0032 (2)
S1 0.0209 (9) 0.0376 (11) 0.0221 (10) −0.0070 (10) 0.0047 (8) −0.0036 (10)
S2 0.0205 (10) 0.0232 (9) 0.0225 (10) −0.0030 (7) 0.0057 (8) −0.0025 (8)
S3 0.0218 (10) 0.0283 (9) 0.0203 (10) −0.0009 (8) 0.0062 (9) −0.0015 (8)
S4 0.0204 (9) 0.0356 (10) 0.0244 (10) −0.0058 (11) 0.0039 (8) 0.0023 (11)
C1 0.033 (5) 0.031 (5) 0.042 (5) −0.004 (4) 0.003 (4) −0.006 (4)
C2 0.027 (5) 0.021 (4) 0.053 (6) 0.006 (3) 0.005 (4) −0.004 (4)
C3 0.016 (4) 0.026 (3) 0.029 (4) 0.007 (3) 0.006 (3) 0.000 (3)
C4 0.021 (4) 0.033 (4) 0.027 (4) 0.005 (3) 0.004 (3) 0.002 (3)
C5 0.044 (5) 0.033 (4) 0.027 (4) 0.005 (4) 0.008 (4) 0.005 (4)
C6 0.035 (5) 0.044 (4) 0.025 (5) 0.001 (4) 0.005 (4) −0.002 (4)
C7 0.033 (5) 0.032 (4) 0.037 (5) −0.008 (4) 0.008 (4) −0.014 (4)
C8 0.027 (4) 0.032 (4) 0.032 (4) 0.001 (4) 0.010 (3) −0.002 (4)
C9 0.059 (6) 0.039 (5) 0.022 (5) −0.011 (4) 0.004 (4) 0.002 (4)
C10 0.010 (4) 0.024 (4) 0.025 (4) 0.002 (3) 0.005 (3) −0.002 (3)
C11 0.017 (4) 0.031 (4) 0.030 (4) 0.006 (3) 0.009 (3) −0.003 (3)
C12 0.027 (4) 0.029 (4) 0.036 (5) 0.003 (4) 0.002 (4) −0.012 (4)
C13 0.032 (5) 0.021 (4) 0.052 (6) −0.009 (4) 0.008 (4) 0.000 (4)
C14 0.029 (5) 0.026 (4) 0.040 (5) 0.000 (3) 0.016 (4) 0.001 (4)
C15 0.031 (5) 0.030 (4) 0.025 (4) −0.004 (4) 0.009 (4) 0.001 (3)
C16 0.040 (5) 0.041 (5) 0.032 (5) −0.001 (4) 0.010 (4) 0.000 (4)
C17 0.018 (4) 0.029 (4) 0.038 (5) −0.002 (3) 0.007 (4) −0.008 (4)
C18 0.013 (4) 0.046 (5) 0.054 (6) 0.008 (4) 0.007 (4) −0.022 (5)
C19 0.026 (5) 0.066 (7) 0.058 (7) −0.005 (5) 0.005 (5) −0.037 (6)
C20 0.026 (5) 0.054 (6) 0.096 (10) −0.011 (5) 0.015 (6) −0.036 (7)
C21 0.036 (5) 0.035 (5) 0.081 (8) −0.008 (4) 0.021 (5) −0.012 (5)
C22 0.034 (5) 0.029 (4) 0.052 (6) −0.007 (4) 0.023 (4) −0.009 (4)
C23 0.037 (5) 0.071 (6) 0.027 (5) 0.012 (5) 0.003 (4) −0.007 (4)
C24 0.023 (4) 0.035 (4) 0.024 (4) −0.007 (3) 0.011 (3) 0.003 (3)
C25 0.024 (4) 0.033 (4) 0.025 (4) −0.010 (3) 0.002 (3) 0.005 (3)
C26 0.039 (5) 0.049 (5) 0.034 (5) −0.013 (5) −0.006 (4) 0.015 (5)
C27 0.053 (6) 0.061 (6) 0.020 (5) −0.028 (5) 0.004 (4) −0.002 (4)
C28 0.048 (6) 0.044 (6) 0.043 (6) −0.011 (5) 0.017 (5) −0.017 (4)
C29 0.022 (4) 0.042 (4) 0.038 (5) −0.003 (4) 0.009 (3) 0.000 (5)
C30 0.027 (5) 0.035 (4) 0.055 (6) 0.004 (4) −0.002 (4) 0.015 (4)

Geometric parameters (Å, º)

In1—C1 2.119 (9) C12—C13 1.366 (12)
In1—S1 2.466 (2) C12—H12 0.9500
In1—S2 2.531 (2) C13—C14 1.379 (11)
In1—S3 2.678 (2) C13—H13 0.9500
In1—S4i 3.0910 (19) C14—C15 1.398 (10)
In2—C2 2.146 (8) C14—H14 0.9500
In2—S4 2.460 (2) C15—H15 0.9500
In2—S3 2.546 (2) C16—H16A 0.9800
In2—S2 2.722 (2) C16—H16B 0.9800
In2—S1ii 2.9201 (19) C16—H16C 0.9800
S1—C3 1.776 (8) C17—C22 1.386 (12)
S1—In2i 2.9201 (19) C17—C18 1.386 (12)
S2—C10 1.794 (7) C18—C19 1.415 (12)
S3—C17 1.802 (8) C18—C23 1.491 (13)
S4—C24 1.792 (8) C19—C20 1.339 (15)
C1—H1A 0.9800 C19—H19 0.9500
C1—H1B 0.9800 C20—C21 1.391 (14)
C1—H1C 0.9800 C20—H20 0.9500
C2—H2A 0.9800 C21—C22 1.395 (11)
C2—H2B 0.9800 C21—H21 0.9500
C2—H2C 0.9800 C22—H22 0.9500
C3—C8 1.386 (10) C23—H23A 0.9800
C3—C4 1.404 (10) C23—H23B 0.9800
C4—C5 1.398 (11) C23—H23C 0.9800
C4—C9 1.504 (11) C24—C29 1.379 (11)
C5—C6 1.361 (11) C24—C25 1.409 (10)
C5—H5 0.9500 C25—C26 1.399 (11)
C6—C7 1.373 (11) C25—C30 1.508 (11)
C6—H6 0.9500 C26—C27 1.371 (13)
C7—C8 1.393 (11) C26—H26 0.9500
C7—H7 0.9500 C27—C28 1.368 (13)
C8—H8 0.9500 C27—H27 0.9500
C9—H9A 0.9800 C28—C29 1.376 (11)
C9—H9B 0.9800 C28—H28 0.9500
C9—H9C 0.9800 C29—H29 0.9500
C10—C15 1.374 (10) C30—H30A 0.9800
C10—C11 1.409 (10) C30—H30B 0.9800
C11—C12 1.393 (10) C30—H30C 0.9800
C11—C16 1.500 (11)
C1—In1—S1 127.3 (2) C12—C11—C10 116.6 (7)
C1—In1—S2 113.1 (3) C12—C11—C16 121.7 (8)
S1—In1—S2 114.66 (7) C10—C11—C16 121.6 (7)
C1—In1—S3 105.7 (2) C13—C12—C11 122.9 (8)
S1—In1—S3 96.94 (6) C13—C12—H12 118.6
S2—In1—S3 88.28 (6) C11—C12—H12 118.6
C1—In1—S4i 85.4 (2) C12—C13—C14 119.8 (7)
S1—In1—S4i 73.86 (6) C12—C13—H13 120.1
S2—In1—S4i 89.64 (6) C14—C13—H13 120.1
S3—In1—S4i 168.67 (6) C13—C14—C15 119.3 (8)
C2—In2—S4 124.1 (3) C13—C14—H14 120.4
C2—In2—S3 118.2 (3) C15—C14—H14 120.4
S4—In2—S3 115.00 (7) C10—C15—C14 120.4 (8)
C2—In2—S2 102.4 (2) C10—C15—H15 119.8
S4—In2—S2 95.87 (6) C14—C15—H15 119.8
S3—In2—S2 87.02 (6) C11—C16—H16A 109.5
C2—In2—S1ii 88.3 (2) C11—C16—H16B 109.5
S4—In2—S1ii 77.21 (6) H16A—C16—H16B 109.5
S3—In2—S1ii 88.45 (6) C11—C16—H16C 109.5
S2—In2—S1ii 169.21 (6) H16A—C16—H16C 109.5
C3—S1—In1 109.9 (3) H16B—C16—H16C 109.5
C3—S1—In2i 125.0 (3) C22—C17—C18 122.0 (8)
In1—S1—In2i 106.71 (7) C22—C17—S3 120.2 (6)
C10—S2—In1 111.6 (2) C18—C17—S3 117.8 (6)
C10—S2—In2 98.4 (2) C17—C18—C19 116.1 (9)
In1—S2—In2 91.86 (6) C17—C18—C23 124.3 (8)
C17—S3—In2 109.2 (3) C19—C18—C23 119.6 (8)
C17—S3—In1 105.3 (3) C20—C19—C18 123.0 (9)
In2—S3—In1 92.58 (7) C20—C19—H19 118.5
C24—S4—In2 103.5 (2) C18—C19—H19 118.5
In1—C1—H1A 109.5 C19—C20—C21 120.1 (9)
In1—C1—H1B 109.5 C19—C20—H20 120.0
H1A—C1—H1B 109.5 C21—C20—H20 120.0
In1—C1—H1C 109.5 C20—C21—C22 119.2 (10)
H1A—C1—H1C 109.5 C20—C21—H21 120.4
H1B—C1—H1C 109.5 C22—C21—H21 120.4
In2—C2—H2A 109.5 C17—C22—C21 119.5 (9)
In2—C2—H2B 109.5 C17—C22—H22 120.2
H2A—C2—H2B 109.5 C21—C22—H22 120.2
In2—C2—H2C 109.5 C18—C23—H23A 109.5
H2A—C2—H2C 109.5 C18—C23—H23B 109.5
H2B—C2—H2C 109.5 H23A—C23—H23B 109.5
C8—C3—C4 120.1 (7) C18—C23—H23C 109.5
C8—C3—S1 122.8 (6) H23A—C23—H23C 109.5
C4—C3—S1 117.0 (6) H23B—C23—H23C 109.5
C5—C4—C3 117.4 (7) C29—C24—C25 121.0 (7)
C5—C4—C9 120.9 (7) C29—C24—S4 119.9 (6)
C3—C4—C9 121.6 (7) C25—C24—S4 119.0 (6)
C6—C5—C4 122.2 (8) C26—C25—C24 116.1 (8)
C6—C5—H5 118.9 C26—C25—C30 121.7 (8)
C4—C5—H5 118.9 C24—C25—C30 122.2 (7)
C5—C6—C7 120.2 (8) C27—C26—C25 122.8 (8)
C5—C6—H6 119.9 C27—C26—H26 118.6
C7—C6—H6 119.9 C25—C26—H26 118.6
C6—C7—C8 119.5 (7) C28—C27—C26 119.4 (8)
C6—C7—H7 120.3 C28—C27—H27 120.3
C8—C7—H7 120.3 C26—C27—H27 120.3
C3—C8—C7 120.4 (7) C27—C28—C29 120.3 (9)
C3—C8—H8 119.8 C27—C28—H28 119.8
C7—C8—H8 119.8 C29—C28—H28 119.8
C4—C9—H9A 109.5 C28—C29—C24 120.3 (8)
C4—C9—H9B 109.5 C28—C29—H29 119.8
H9A—C9—H9B 109.5 C24—C29—H29 119.8
C4—C9—H9C 109.5 C25—C30—H30A 109.5
H9A—C9—H9C 109.5 C25—C30—H30B 109.5
H9B—C9—H9C 109.5 H30A—C30—H30B 109.5
C15—C10—C11 121.1 (7) C25—C30—H30C 109.5
C15—C10—S2 121.1 (6) H30A—C30—H30C 109.5
C11—C10—S2 117.7 (6) H30B—C30—H30C 109.5

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

References

  1. Allan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55–62.
  2. Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2011). Acta Cryst. E67, m714. [DOI] [PMC free article] [PubMed]
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Briand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). J. Organomet. Chem. 806, 22–32.
  6. Briand, G. G., Decken, A. & Hamilton, N. (2010). Dalton Trans. 39, 3833–3841. [DOI] [PubMed]
  7. Briand, G. G., Decken, A., Hunter, N. M., Lee, G. M., Melanson, J. A. & Owen, E. M. (2012). Polyhedron, 31, 796–800.
  8. Briand, G. G., Decken, A., Hunter, N. M., Wright, J. A. & Zhou, Y. (2011). Eur. J. Inorg. Chem. pp. 5430–5436.
  9. Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Hoffmann, G. G. (1988). J. Organomet. Chem. 338, 305–317.
  13. Nomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763–767.
  14. Peppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918–1921.
  15. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837sup1.cif

e-73-00481-sup1.cif (329.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837Isup2.hkl

e-73-00481-Isup2.hkl (444.6KB, hkl)

CCDC reference: 1535922

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES