The dinuclear compound, [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], was prepared from the 1:2 reaction of Me3In and 2-MeC6H4SH in toluene. Its crystal structure exhibits a four-membered In2S2 ring core via bridging (2-MeC6H4S) groups. The dimeric units are further associated into a one-dimensional polymeric structure via intermolecular In⋯S contacts.
Keywords: crystal structure, indium, thiolate, dinuclear, coordination polymer
Abstract
The dinuclear title compound, [In2(CH3)2(C7H7S)4] or [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], was prepared from the 1:2 reaction of Me3In and 2-MeC6H4SH in toluene. Its crystal structure exhibits a four-membered In2S2 ring core via bridging (2-MeC6H4S) groups. The dimeric units are further associated into a one-dimensional polymeric structure extending parallel to the a axis via intermolecular In⋯S contacts. The In atoms are then in distorted trigonal–bipyramidal CS4 bonding environments.
Chemical context
Methylindium dithiolates [MeIn(S2
R)] have been shown to be useful compounds for the ring-opening polymerization (ROP) of cyclic esters to produce biodegradable polymers (Allan et al., 2013 ▸; Briand et al., 2016 ▸). These compounds are prepared from the stoichiometric reaction of InMe3 with polydentate amino/oxo-dithiols. However, the 1:2 reaction of triorganylindium (R
3In) with simple monothiols (R′SH) often results in isolation of the diorganylindium thiolate R
2In(SR′) (Hoffmann, 1988 ▸; Nomura et al., 1989 ▸). The favourable formation of the organylindium dithiolate RIn(SR′)2 was reported to be determined by the steric bulk of the thiolate ligand and the R-In group, and the acidity of the thiol reactant. The 1:2 reaction of nBu3In or iBu3In and PhSH afforded the dithiolate RIn(SPh)2 (R = nBu, iBu) as solids, although the compounds were poorly soluble in organic solvents, precluding crystallization. All compounds in these studies were primarily characterized by NMR. The only structurally characterized example of such a compound is [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh), which is prepared from the redox reaction of the indium(I) compound [(Me3Si)3CIn]4 and the disulfide (SPh)2 (Peppe et al., 2009 ▸). The 1:2 reaction of Me3In and 2-MeC6H4SH in toluene affords [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I), in high yield. The modest steric bulk afforded by the 2-MeC6H4 group moderates intermolecular bonding and increases solubility in organic solvents without preventing formation of the RIn(SR′)2 species. The observation of only one signal for the MeIn and 2-MeC6H4S groups in the 1H NMR study suggests that the compound dissociates into MeIn(2-MeC6H4S)2 monomers in tetrahydrofuran solution.
Structural commentary
The asymmetric unit comprises the dinuclear compound, [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I) (Fig. 1 ▸). The two unique indium atoms are each bonded to a methyl carbon atom, and one terminal and one bridging (2-MeC6H4S) group, generating a nearly square-planar four-membered In2S2 ring core [S2—In1—S3 = 88.28 (6), In1—S2—In2 = 91.86 (6), S2—In2—S3 = 87.02 (6), In1—S3—In2 = 92.58 (7)°]. The In atoms are in distorted trigonal–pyramidal CS3 bonding environments [C1—In1—S1 = 127.3 (2), C1—In1—S2 = 113.1 (3), S1—In1—S2 = 114.66 (7), C1—In1—S3 = 105.7 (2), S1—In1—S3 = 96.94 (6), S2—In1—S3 = 88.28 (6), C2—In2—S3 = 118.2 (3), C2—In2—S4 = 124.1 (3), S3—In2—S4 = 115.00 (7), C2—In2—S2 = 102.4 (2), S2—In2—S3 = 87.02 (6), S2—In2—S4 = 95.87 (6)°]. Bond lengths and angles are similar at each indium atom.
Figure 1.
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
Supramolecular features
The dimeric structures are further associated into one-dimensional polymers extending parallel to the a axis via intermolecular In⋯S contacts [In1⋯S4(x − 1, y, z) = 3.091 (2), In2⋯S1(x + 1, y, z) = 2.920 (2) Å] (sum of metallic/van der Waals radii = 3.52 Å; Bondi, 1964 ▸) (Fig. 2 ▸). Such contacts are common for indium and other heavy main group metal chalcogenolates due to their large metal radii and potential for high coordination numbers (Briand et al., 2010 ▸, 2011 ▸, 2012 ▸; Appleton et al., 2011 ▸). This leads to the formation of insoluble materials for iBuIn(SPh)2 (Nomura et al., 1989 ▸). The steric bulk provided by the Me group of the (2-MeC6H4S) ligand is sufficient to moderate intermolecular contacts and afford solubility in organic solvents (e.g. toluene and tetrahydrofuran).
Figure 2.
Part of the crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z.]
Database survey
The dinuclear structure of (I) is similar to that of [Me(MeO2CCH2CH2S)In-μ-(MeO2CCH2CH2S)2InMe(MeO2CCH2CH2S)] (Allan et al., 2013 ▸). However, the ester carbonyl oxygen atoms of the terminal MeO2CCH2CH2S groups occupy the coordination site trans to the axial bridging thiolate sulfur atom. This precludes intermolecular In⋯S bonding and yields discrete dimeric units. The structure of (I) is also similar to that of the structure of dimeric [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh) (Peppe et al., 2009 ▸). However, the steric bulk of the (Me3Si)3C precludes further intermolecular In⋯S bonding and the indium atoms are restricted to a four-coordinate distorted tetrahedral bonding environment. Other reported methylindium dithiolates employ polydentate dithiolate ligands, some of which possess dimeric and trimeric structures (Briand et al., 2016 ▸).
Synthesis and crystallization
2-Methylbenzenethiol (0.300 g, 2.42 mmol) in toluene (2 ml) was added dropwise to a stirred solution of InMe3 (0.193 g, 1.21 mmol) in toluene (5 ml). The solution was stirred for 18 h and concentrated in vacuo to 4 ml. After sitting at 296 K for 1 d, the solution was filtered to yield colourless, needle-like crystals of (I). Yield: 0.317 g (0.421 mmol, 70%). Analysis calculated for C30H34S4In2: C, 47.88; H, 4.55; N, 0.00. Found: C, 46.88; H, 4.55; N, <0.3. M.p 421–422 K.
FT—IR (cm−1): 672 s, 705 s, 741 s, 800 w, 846 w, 861 w, 939 w, 978 w, 1041 m, 1055 m, 1280 w, 1378 w, 1451 m, 1464 m, 1585 w, 2913 w, 3056 w. FT–Raman (cm−1): 121 vs, 158 s, 244 w, 322 m, 443 w, 508 s, 552 w, 675 w, 800 m, 1043 s, 1128 w, 1148 w, 1204 m, 1465 w, 1565 w, 1586 m, 2916 w, 3047 m. 1H NMR (200 MHz, thf-d 8, p.p.m.): δ = 0.23 [s, 3H, MeIn], 2.60 [s, 6H, (S-2-MeC6H4)], 7.06–7.11 [m, 4H, (S-2-MeC6 H 4)] 7.23–7.28 [m, 2H, (S-2-MeC6 H 4)], 7.62–7.66 [m, 2H, (S-2-MeC6 H 4)]. 13C{1H} NMR (101 MHz, thf-d 8, p.p.m.): δ = −5.1 (MeIn), 21.7 (S-2-MeC6H4), 124.1, 125.2, 129.4, 134.6, 138.4, 139.7 (S-2-MeC 6H4)].
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1 ▸. H atoms were included in calculated positions and refined using a riding model.
Table 1. Experimental details.
| Crystal data | |
| Chemical formula | [In2(CH3)2(C7H7S)4] |
| M r | 752.45 |
| Crystal system, space group | Monoclinic, P21 |
| Temperature (K) | 173 |
| a, b, c (Å) | 7.4441 (15), 14.625 (3), 14.074 (3) |
| β (°) | 99.693 (3) |
| V (Å3) | 1510.4 (5) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.82 |
| Crystal size (mm) | 0.45 × 0.08 × 0.03 |
| Data collection | |
| Diffractometer | Bruker SMART1000/P4 |
| Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a ▸) |
| T min, T max | 0.495, 0.956 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 10442, 5591, 4742 |
| R int | 0.041 |
| (sin θ/λ)max (Å−1) | 0.650 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.074, 1.04 |
| No. of reflections | 5591 |
| No. of parameters | 332 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.49, −1.01 |
| Absolute structure | Flack (1983 ▸), 2079 Friedel pairs |
| Absolute structure parameter | 0.41 (3) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837Isup2.hkl
CCDC reference: 1535922
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [In2(CH3)2(C7H7S)4] | F(000) = 752 |
| Mr = 752.45 | Dx = 1.655 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.4441 (15) Å | Cell parameters from 5877 reflections |
| b = 14.625 (3) Å | θ = 2.8–27.8° |
| c = 14.074 (3) Å | µ = 1.82 mm−1 |
| β = 99.693 (3)° | T = 173 K |
| V = 1510.4 (5) Å3 | Rod, colourless |
| Z = 2 | 0.45 × 0.08 × 0.03 mm |
Data collection
| Bruker SMART1000/P4 diffractometer | 5591 independent reflections |
| Radiation source: fine-focus sealed tube, K760 | 4742 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.041 |
| φ and ω scans | θmax = 27.5°, θmin = 1.5° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −9→9 |
| Tmin = 0.495, Tmax = 0.956 | k = −18→19 |
| 10442 measured reflections | l = −18→17 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
| wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0276P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.001 |
| 5591 reflections | Δρmax = 0.49 e Å−3 |
| 332 parameters | Δρmin = −1.01 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), 2079 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.41 (3) |
Special details
| Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refined as a 2-component inversion twin |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| In1 | 0.60776 (7) | 0.80291 (3) | 0.26699 (4) | 0.02518 (14) | |
| In2 | 1.05764 (7) | 0.69727 (3) | 0.23677 (4) | 0.02406 (14) | |
| S1 | 0.4196 (2) | 0.70588 (16) | 0.35474 (14) | 0.0268 (4) | |
| S2 | 0.7227 (3) | 0.72420 (11) | 0.12869 (14) | 0.0218 (4) | |
| S3 | 0.9290 (3) | 0.76607 (13) | 0.37732 (15) | 0.0232 (4) | |
| S4 | 1.2193 (2) | 0.80568 (17) | 0.14747 (13) | 0.0268 (4) | |
| C1 | 0.5973 (11) | 0.9472 (6) | 0.2527 (7) | 0.036 (2) | |
| H1A | 0.6958 | 0.9746 | 0.2988 | 0.054* | |
| H1B | 0.4796 | 0.9694 | 0.2656 | 0.054* | |
| H1C | 0.6115 | 0.9641 | 0.1870 | 0.054* | |
| C2 | 1.0874 (11) | 0.5515 (5) | 0.2317 (7) | 0.034 (2) | |
| H2A | 1.2104 | 0.5364 | 0.2206 | 0.051* | |
| H2B | 0.9975 | 0.5265 | 0.1792 | 0.051* | |
| H2C | 1.0678 | 0.5249 | 0.2931 | 0.051* | |
| C3 | 0.4643 (10) | 0.7328 (5) | 0.4795 (6) | 0.0235 (17) | |
| C4 | 0.4170 (10) | 0.6667 (5) | 0.5433 (6) | 0.0269 (18) | |
| C5 | 0.4608 (11) | 0.6852 (6) | 0.6420 (6) | 0.0346 (19) | |
| H5 | 0.4308 | 0.6413 | 0.6865 | 0.042* | |
| C6 | 0.5449 (11) | 0.7639 (6) | 0.6763 (6) | 0.035 (2) | |
| H6 | 0.5751 | 0.7736 | 0.7439 | 0.042* | |
| C7 | 0.5863 (11) | 0.8296 (5) | 0.6137 (6) | 0.034 (2) | |
| H7 | 0.6436 | 0.8850 | 0.6376 | 0.040* | |
| C8 | 0.5435 (10) | 0.8145 (6) | 0.5147 (5) | 0.0297 (18) | |
| H8 | 0.5687 | 0.8604 | 0.4711 | 0.036* | |
| C9 | 0.3221 (13) | 0.5794 (6) | 0.5076 (6) | 0.041 (2) | |
| H9A | 0.2848 | 0.5467 | 0.5618 | 0.061* | |
| H9B | 0.4054 | 0.5410 | 0.4780 | 0.061* | |
| H9C | 0.2143 | 0.5937 | 0.4597 | 0.061* | |
| C10 | 0.6499 (9) | 0.6072 (5) | 0.1171 (5) | 0.0196 (16) | |
| C11 | 0.6429 (10) | 0.5650 (5) | 0.0265 (6) | 0.0254 (17) | |
| C12 | 0.6019 (10) | 0.4720 (5) | 0.0215 (6) | 0.0307 (19) | |
| H12 | 0.5984 | 0.4414 | −0.0383 | 0.037* | |
| C13 | 0.5667 (11) | 0.4229 (5) | 0.0989 (6) | 0.035 (2) | |
| H13 | 0.5361 | 0.3599 | 0.0918 | 0.042* | |
| C14 | 0.5755 (11) | 0.4651 (5) | 0.1872 (6) | 0.0305 (19) | |
| H14 | 0.5540 | 0.4311 | 0.2417 | 0.037* | |
| C15 | 0.6163 (11) | 0.5583 (5) | 0.1957 (6) | 0.0285 (18) | |
| H15 | 0.6208 | 0.5881 | 0.2560 | 0.034* | |
| C16 | 0.6849 (12) | 0.6168 (6) | −0.0591 (6) | 0.037 (2) | |
| H16A | 0.8122 | 0.6372 | −0.0464 | 0.056* | |
| H16B | 0.6045 | 0.6701 | −0.0708 | 0.056* | |
| H16C | 0.6656 | 0.5770 | −0.1159 | 0.056* | |
| C17 | 1.0334 (10) | 0.8758 (5) | 0.4071 (6) | 0.0281 (18) | |
| C18 | 1.0799 (11) | 0.8983 (6) | 0.5038 (7) | 0.038 (2) | |
| C19 | 1.1513 (12) | 0.9872 (7) | 0.5242 (8) | 0.050 (3) | |
| H19 | 1.1826 | 1.0054 | 0.5897 | 0.060* | |
| C20 | 1.1768 (12) | 1.0467 (7) | 0.4554 (9) | 0.058 (3) | |
| H20 | 1.2259 | 1.1055 | 0.4727 | 0.070* | |
| C21 | 1.1315 (12) | 1.0226 (6) | 0.3587 (8) | 0.049 (3) | |
| H21 | 1.1498 | 1.0646 | 0.3097 | 0.059* | |
| C22 | 1.0589 (11) | 0.9361 (5) | 0.3345 (7) | 0.037 (2) | |
| H22 | 1.0272 | 0.9187 | 0.2688 | 0.044* | |
| C23 | 1.0596 (12) | 0.8356 (7) | 0.5848 (6) | 0.045 (2) | |
| H23A | 1.1387 | 0.7822 | 0.5831 | 0.068* | |
| H23B | 0.9325 | 0.8154 | 0.5782 | 0.068* | |
| H23C | 1.0941 | 0.8677 | 0.6462 | 0.068* | |
| C24 | 1.1434 (10) | 0.7751 (5) | 0.0239 (6) | 0.0267 (18) | |
| C25 | 1.0177 (10) | 0.8323 (5) | −0.0341 (5) | 0.0276 (18) | |
| C26 | 0.9738 (11) | 0.8081 (7) | −0.1314 (6) | 0.042 (2) | |
| H26 | 0.8901 | 0.8452 | −0.1730 | 0.050* | |
| C27 | 1.0464 (13) | 0.7330 (6) | −0.1693 (6) | 0.045 (2) | |
| H27 | 1.0144 | 0.7192 | −0.2360 | 0.054* | |
| C28 | 1.1654 (12) | 0.6781 (6) | −0.1103 (7) | 0.044 (2) | |
| H28 | 1.2144 | 0.6253 | −0.1359 | 0.053* | |
| C29 | 1.2146 (10) | 0.6990 (6) | −0.0141 (6) | 0.0334 (17) | |
| H29 | 1.2980 | 0.6608 | 0.0263 | 0.040* | |
| C30 | 0.9353 (11) | 0.9151 (6) | 0.0057 (7) | 0.040 (2) | |
| H30A | 1.0317 | 0.9593 | 0.0289 | 0.060* | |
| H30B | 0.8745 | 0.8965 | 0.0593 | 0.060* | |
| H30C | 0.8462 | 0.9432 | −0.0451 | 0.060* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| In1 | 0.0262 (3) | 0.0223 (2) | 0.0294 (3) | −0.0009 (2) | 0.0116 (2) | −0.0015 (3) |
| In2 | 0.0220 (3) | 0.0244 (3) | 0.0273 (3) | −0.0018 (2) | 0.0085 (2) | −0.0032 (2) |
| S1 | 0.0209 (9) | 0.0376 (11) | 0.0221 (10) | −0.0070 (10) | 0.0047 (8) | −0.0036 (10) |
| S2 | 0.0205 (10) | 0.0232 (9) | 0.0225 (10) | −0.0030 (7) | 0.0057 (8) | −0.0025 (8) |
| S3 | 0.0218 (10) | 0.0283 (9) | 0.0203 (10) | −0.0009 (8) | 0.0062 (9) | −0.0015 (8) |
| S4 | 0.0204 (9) | 0.0356 (10) | 0.0244 (10) | −0.0058 (11) | 0.0039 (8) | 0.0023 (11) |
| C1 | 0.033 (5) | 0.031 (5) | 0.042 (5) | −0.004 (4) | 0.003 (4) | −0.006 (4) |
| C2 | 0.027 (5) | 0.021 (4) | 0.053 (6) | 0.006 (3) | 0.005 (4) | −0.004 (4) |
| C3 | 0.016 (4) | 0.026 (3) | 0.029 (4) | 0.007 (3) | 0.006 (3) | 0.000 (3) |
| C4 | 0.021 (4) | 0.033 (4) | 0.027 (4) | 0.005 (3) | 0.004 (3) | 0.002 (3) |
| C5 | 0.044 (5) | 0.033 (4) | 0.027 (4) | 0.005 (4) | 0.008 (4) | 0.005 (4) |
| C6 | 0.035 (5) | 0.044 (4) | 0.025 (5) | 0.001 (4) | 0.005 (4) | −0.002 (4) |
| C7 | 0.033 (5) | 0.032 (4) | 0.037 (5) | −0.008 (4) | 0.008 (4) | −0.014 (4) |
| C8 | 0.027 (4) | 0.032 (4) | 0.032 (4) | 0.001 (4) | 0.010 (3) | −0.002 (4) |
| C9 | 0.059 (6) | 0.039 (5) | 0.022 (5) | −0.011 (4) | 0.004 (4) | 0.002 (4) |
| C10 | 0.010 (4) | 0.024 (4) | 0.025 (4) | 0.002 (3) | 0.005 (3) | −0.002 (3) |
| C11 | 0.017 (4) | 0.031 (4) | 0.030 (4) | 0.006 (3) | 0.009 (3) | −0.003 (3) |
| C12 | 0.027 (4) | 0.029 (4) | 0.036 (5) | 0.003 (4) | 0.002 (4) | −0.012 (4) |
| C13 | 0.032 (5) | 0.021 (4) | 0.052 (6) | −0.009 (4) | 0.008 (4) | 0.000 (4) |
| C14 | 0.029 (5) | 0.026 (4) | 0.040 (5) | 0.000 (3) | 0.016 (4) | 0.001 (4) |
| C15 | 0.031 (5) | 0.030 (4) | 0.025 (4) | −0.004 (4) | 0.009 (4) | 0.001 (3) |
| C16 | 0.040 (5) | 0.041 (5) | 0.032 (5) | −0.001 (4) | 0.010 (4) | 0.000 (4) |
| C17 | 0.018 (4) | 0.029 (4) | 0.038 (5) | −0.002 (3) | 0.007 (4) | −0.008 (4) |
| C18 | 0.013 (4) | 0.046 (5) | 0.054 (6) | 0.008 (4) | 0.007 (4) | −0.022 (5) |
| C19 | 0.026 (5) | 0.066 (7) | 0.058 (7) | −0.005 (5) | 0.005 (5) | −0.037 (6) |
| C20 | 0.026 (5) | 0.054 (6) | 0.096 (10) | −0.011 (5) | 0.015 (6) | −0.036 (7) |
| C21 | 0.036 (5) | 0.035 (5) | 0.081 (8) | −0.008 (4) | 0.021 (5) | −0.012 (5) |
| C22 | 0.034 (5) | 0.029 (4) | 0.052 (6) | −0.007 (4) | 0.023 (4) | −0.009 (4) |
| C23 | 0.037 (5) | 0.071 (6) | 0.027 (5) | 0.012 (5) | 0.003 (4) | −0.007 (4) |
| C24 | 0.023 (4) | 0.035 (4) | 0.024 (4) | −0.007 (3) | 0.011 (3) | 0.003 (3) |
| C25 | 0.024 (4) | 0.033 (4) | 0.025 (4) | −0.010 (3) | 0.002 (3) | 0.005 (3) |
| C26 | 0.039 (5) | 0.049 (5) | 0.034 (5) | −0.013 (5) | −0.006 (4) | 0.015 (5) |
| C27 | 0.053 (6) | 0.061 (6) | 0.020 (5) | −0.028 (5) | 0.004 (4) | −0.002 (4) |
| C28 | 0.048 (6) | 0.044 (6) | 0.043 (6) | −0.011 (5) | 0.017 (5) | −0.017 (4) |
| C29 | 0.022 (4) | 0.042 (4) | 0.038 (5) | −0.003 (4) | 0.009 (3) | 0.000 (5) |
| C30 | 0.027 (5) | 0.035 (4) | 0.055 (6) | 0.004 (4) | −0.002 (4) | 0.015 (4) |
Geometric parameters (Å, º)
| In1—C1 | 2.119 (9) | C12—C13 | 1.366 (12) |
| In1—S1 | 2.466 (2) | C12—H12 | 0.9500 |
| In1—S2 | 2.531 (2) | C13—C14 | 1.379 (11) |
| In1—S3 | 2.678 (2) | C13—H13 | 0.9500 |
| In1—S4i | 3.0910 (19) | C14—C15 | 1.398 (10) |
| In2—C2 | 2.146 (8) | C14—H14 | 0.9500 |
| In2—S4 | 2.460 (2) | C15—H15 | 0.9500 |
| In2—S3 | 2.546 (2) | C16—H16A | 0.9800 |
| In2—S2 | 2.722 (2) | C16—H16B | 0.9800 |
| In2—S1ii | 2.9201 (19) | C16—H16C | 0.9800 |
| S1—C3 | 1.776 (8) | C17—C22 | 1.386 (12) |
| S1—In2i | 2.9201 (19) | C17—C18 | 1.386 (12) |
| S2—C10 | 1.794 (7) | C18—C19 | 1.415 (12) |
| S3—C17 | 1.802 (8) | C18—C23 | 1.491 (13) |
| S4—C24 | 1.792 (8) | C19—C20 | 1.339 (15) |
| C1—H1A | 0.9800 | C19—H19 | 0.9500 |
| C1—H1B | 0.9800 | C20—C21 | 1.391 (14) |
| C1—H1C | 0.9800 | C20—H20 | 0.9500 |
| C2—H2A | 0.9800 | C21—C22 | 1.395 (11) |
| C2—H2B | 0.9800 | C21—H21 | 0.9500 |
| C2—H2C | 0.9800 | C22—H22 | 0.9500 |
| C3—C8 | 1.386 (10) | C23—H23A | 0.9800 |
| C3—C4 | 1.404 (10) | C23—H23B | 0.9800 |
| C4—C5 | 1.398 (11) | C23—H23C | 0.9800 |
| C4—C9 | 1.504 (11) | C24—C29 | 1.379 (11) |
| C5—C6 | 1.361 (11) | C24—C25 | 1.409 (10) |
| C5—H5 | 0.9500 | C25—C26 | 1.399 (11) |
| C6—C7 | 1.373 (11) | C25—C30 | 1.508 (11) |
| C6—H6 | 0.9500 | C26—C27 | 1.371 (13) |
| C7—C8 | 1.393 (11) | C26—H26 | 0.9500 |
| C7—H7 | 0.9500 | C27—C28 | 1.368 (13) |
| C8—H8 | 0.9500 | C27—H27 | 0.9500 |
| C9—H9A | 0.9800 | C28—C29 | 1.376 (11) |
| C9—H9B | 0.9800 | C28—H28 | 0.9500 |
| C9—H9C | 0.9800 | C29—H29 | 0.9500 |
| C10—C15 | 1.374 (10) | C30—H30A | 0.9800 |
| C10—C11 | 1.409 (10) | C30—H30B | 0.9800 |
| C11—C12 | 1.393 (10) | C30—H30C | 0.9800 |
| C11—C16 | 1.500 (11) | ||
| C1—In1—S1 | 127.3 (2) | C12—C11—C10 | 116.6 (7) |
| C1—In1—S2 | 113.1 (3) | C12—C11—C16 | 121.7 (8) |
| S1—In1—S2 | 114.66 (7) | C10—C11—C16 | 121.6 (7) |
| C1—In1—S3 | 105.7 (2) | C13—C12—C11 | 122.9 (8) |
| S1—In1—S3 | 96.94 (6) | C13—C12—H12 | 118.6 |
| S2—In1—S3 | 88.28 (6) | C11—C12—H12 | 118.6 |
| C1—In1—S4i | 85.4 (2) | C12—C13—C14 | 119.8 (7) |
| S1—In1—S4i | 73.86 (6) | C12—C13—H13 | 120.1 |
| S2—In1—S4i | 89.64 (6) | C14—C13—H13 | 120.1 |
| S3—In1—S4i | 168.67 (6) | C13—C14—C15 | 119.3 (8) |
| C2—In2—S4 | 124.1 (3) | C13—C14—H14 | 120.4 |
| C2—In2—S3 | 118.2 (3) | C15—C14—H14 | 120.4 |
| S4—In2—S3 | 115.00 (7) | C10—C15—C14 | 120.4 (8) |
| C2—In2—S2 | 102.4 (2) | C10—C15—H15 | 119.8 |
| S4—In2—S2 | 95.87 (6) | C14—C15—H15 | 119.8 |
| S3—In2—S2 | 87.02 (6) | C11—C16—H16A | 109.5 |
| C2—In2—S1ii | 88.3 (2) | C11—C16—H16B | 109.5 |
| S4—In2—S1ii | 77.21 (6) | H16A—C16—H16B | 109.5 |
| S3—In2—S1ii | 88.45 (6) | C11—C16—H16C | 109.5 |
| S2—In2—S1ii | 169.21 (6) | H16A—C16—H16C | 109.5 |
| C3—S1—In1 | 109.9 (3) | H16B—C16—H16C | 109.5 |
| C3—S1—In2i | 125.0 (3) | C22—C17—C18 | 122.0 (8) |
| In1—S1—In2i | 106.71 (7) | C22—C17—S3 | 120.2 (6) |
| C10—S2—In1 | 111.6 (2) | C18—C17—S3 | 117.8 (6) |
| C10—S2—In2 | 98.4 (2) | C17—C18—C19 | 116.1 (9) |
| In1—S2—In2 | 91.86 (6) | C17—C18—C23 | 124.3 (8) |
| C17—S3—In2 | 109.2 (3) | C19—C18—C23 | 119.6 (8) |
| C17—S3—In1 | 105.3 (3) | C20—C19—C18 | 123.0 (9) |
| In2—S3—In1 | 92.58 (7) | C20—C19—H19 | 118.5 |
| C24—S4—In2 | 103.5 (2) | C18—C19—H19 | 118.5 |
| In1—C1—H1A | 109.5 | C19—C20—C21 | 120.1 (9) |
| In1—C1—H1B | 109.5 | C19—C20—H20 | 120.0 |
| H1A—C1—H1B | 109.5 | C21—C20—H20 | 120.0 |
| In1—C1—H1C | 109.5 | C20—C21—C22 | 119.2 (10) |
| H1A—C1—H1C | 109.5 | C20—C21—H21 | 120.4 |
| H1B—C1—H1C | 109.5 | C22—C21—H21 | 120.4 |
| In2—C2—H2A | 109.5 | C17—C22—C21 | 119.5 (9) |
| In2—C2—H2B | 109.5 | C17—C22—H22 | 120.2 |
| H2A—C2—H2B | 109.5 | C21—C22—H22 | 120.2 |
| In2—C2—H2C | 109.5 | C18—C23—H23A | 109.5 |
| H2A—C2—H2C | 109.5 | C18—C23—H23B | 109.5 |
| H2B—C2—H2C | 109.5 | H23A—C23—H23B | 109.5 |
| C8—C3—C4 | 120.1 (7) | C18—C23—H23C | 109.5 |
| C8—C3—S1 | 122.8 (6) | H23A—C23—H23C | 109.5 |
| C4—C3—S1 | 117.0 (6) | H23B—C23—H23C | 109.5 |
| C5—C4—C3 | 117.4 (7) | C29—C24—C25 | 121.0 (7) |
| C5—C4—C9 | 120.9 (7) | C29—C24—S4 | 119.9 (6) |
| C3—C4—C9 | 121.6 (7) | C25—C24—S4 | 119.0 (6) |
| C6—C5—C4 | 122.2 (8) | C26—C25—C24 | 116.1 (8) |
| C6—C5—H5 | 118.9 | C26—C25—C30 | 121.7 (8) |
| C4—C5—H5 | 118.9 | C24—C25—C30 | 122.2 (7) |
| C5—C6—C7 | 120.2 (8) | C27—C26—C25 | 122.8 (8) |
| C5—C6—H6 | 119.9 | C27—C26—H26 | 118.6 |
| C7—C6—H6 | 119.9 | C25—C26—H26 | 118.6 |
| C6—C7—C8 | 119.5 (7) | C28—C27—C26 | 119.4 (8) |
| C6—C7—H7 | 120.3 | C28—C27—H27 | 120.3 |
| C8—C7—H7 | 120.3 | C26—C27—H27 | 120.3 |
| C3—C8—C7 | 120.4 (7) | C27—C28—C29 | 120.3 (9) |
| C3—C8—H8 | 119.8 | C27—C28—H28 | 119.8 |
| C7—C8—H8 | 119.8 | C29—C28—H28 | 119.8 |
| C4—C9—H9A | 109.5 | C28—C29—C24 | 120.3 (8) |
| C4—C9—H9B | 109.5 | C28—C29—H29 | 119.8 |
| H9A—C9—H9B | 109.5 | C24—C29—H29 | 119.8 |
| C4—C9—H9C | 109.5 | C25—C30—H30A | 109.5 |
| H9A—C9—H9C | 109.5 | C25—C30—H30B | 109.5 |
| H9B—C9—H9C | 109.5 | H30A—C30—H30B | 109.5 |
| C15—C10—C11 | 121.1 (7) | C25—C30—H30C | 109.5 |
| C15—C10—S2 | 121.1 (6) | H30A—C30—H30C | 109.5 |
| C11—C10—S2 | 117.7 (6) | H30B—C30—H30C | 109.5 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.
References
- Allan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55–62.
- Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2011). Acta Cryst. E67, m714. [DOI] [PMC free article] [PubMed]
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Briand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). J. Organomet. Chem. 806, 22–32.
- Briand, G. G., Decken, A. & Hamilton, N. (2010). Dalton Trans. 39, 3833–3841. [DOI] [PubMed]
- Briand, G. G., Decken, A., Hunter, N. M., Lee, G. M., Melanson, J. A. & Owen, E. M. (2012). Polyhedron, 31, 796–800.
- Briand, G. G., Decken, A., Hunter, N. M., Wright, J. A. & Zhou, Y. (2011). Eur. J. Inorg. Chem. pp. 5430–5436.
- Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hoffmann, G. G. (1988). J. Organomet. Chem. 338, 305–317.
- Nomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763–767.
- Peppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918–1921.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003498/lh5837Isup2.hkl
CCDC reference: 1535922
Additional supporting information: crystallographic information; 3D view; checkCIF report


