Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 17;73(Pt 4):524–527. doi: 10.1107/S2056989017003978

Crystal structure and Hirshfeld surface analysis of 1-(4-chloro­phen­yl)-2-{[5-(4-chloro­phen­yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}ethanone

Rajesh Kumar a, Shafqat Hussain b, Khalid M Khan a, Shahnaz Perveen c, Sammer Yousuf a,*
PMCID: PMC5382613  PMID: 28435712

The title heterocyclic compound is contains an oxadizole and two chloro-substituted phenyl rings. In the crystal, C—H⋯N hydrogen bonding links the mol­ecules into undulating ribbons parallel to the b axis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H⋯C (18%), H⋯H (17%), H⋯Cl (16.6%), H⋯O (10.4%), H⋯N (8.9%) and H⋯S (5.9%) inter­actions.

Keywords: oxadizole, chloro­phen­yl, X-ray structure, Hirshfeld surface analysis, crystal structure

Abstract

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxa­diazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H⋯N hydrogen bonding links the mol­ecules into undulating ribbons running parallel to the b axis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H⋯C (18%), H⋯H (17%), H⋯Cl (16.6%), H⋯O (10.4%), H⋯N (8.9%) and H⋯S (5.9%) inter­actions.

Chemical context  

Heterocyclic compounds are well known for their applications in agriculture (Jakobi et al., 1999) and for the synthesis of pharmaceuticals (Vitaku et al., 2014). The broad range of biological activities of heterocyclic compounds has always fascinated chemists and the literature reveals many approaches to synthesize and derivatize libraries of heterocyclic compounds (Khan et al., 2011; Chohan et al., 2006; Khan et al., 2005). The wide range of applications and biological activities of this class of compounds is due to the presence of heteroatoms (N, O, S) in the mol­ecule (Kashtoh et al., 2014). Oxa­diazo­les are among the most widely studied moieties of organic chemistry due to their many important chemical and biological properties including anti­mycobacterial (Jha et al., 2009), anti­oxidant (Fadda et al., 2011), anti­cancer (Zhang et al., 2011), anti­tumor (Loetchutinat et al., 2003), anti­microbial (Şahin et al., 2002), anti­fungal (Zou et al., 2002), anti-inflammatory (Palaska et al., 2002) and hypotensive (Tyagi & Kumar, 2002) activities.graphic file with name e-73-00524-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) is an oxa­diazole derivative containing two chloro­phenyl substituents attached to a central oxa­diazole thio­ethanone unit. The C1–C6 and C11–C16 phenyl rings form dihedral angles of 6.54 (9) and 6.94 (8)°, respectively, with the oxa­diazole ring. The dihedral angle between the oxa­diazole ring and the mean plane through the S1/O1/C7–C8 fragment is 10.75 (8)°. Bond lengths and angles are not unusual.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules are connected by C—H⋯N hydrogen inter­actions, forming undulating ribbons parallel to the b axis (Table 1, Fig. 2). The importance of these inter­actions in stabilizing the crystal structure may be determined by comparison with those found in similar related compounds. For instance, in the crystal structure of 2-{5-[(1H-1,2,4-triazol-1-yl)meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (Xu et al., 2005) mol­ecules are linked into chains via C—H⋯N hydrogen bonds having H⋯N separations of 2.48 Å. and C—H⋯C inter­actions having H⋯N distances of 2.41 Å. Similarly, in the crystal structure of 1,3-bis{[5-(pyridin-2-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}propan-2-one (Xia et al., 2011), two oxa­diazole rings are present and form inter­molecular hydrogen bonds of the type C—H⋯N with distances of 2.51 and 2.54 Å, respectively. Moreover, in the structure of the latter compound, further stabilization of the crystal structure is provided by π–π inter­actions involving the pyridyl and oxa­diazole rings with centroid-to-centroid distances of 3.883 Å.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.93 2.48 3.353 (3) 157

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Partial crystal packing of the title compound showing the formation of a undulating ribbon parallel to the b axis through C—H⋯N hydrogen bonds (dashed lines).

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the crystal structure suggests that the contribution to the crystal packing of the H⋯N inter­action is 8.9% (Fig. 3). Other important inter­actions based upon the percentages are H⋯H (17%), H⋯O (10.4%), H⋯C (18%), H⋯S (5.9%) and H⋯Cl (16.6%). These inter­actions, however, were not found to be involved in hydrogen bonding, as observed for the H⋯N contribution (Fig. 4). The Hirshfeld surface diagram shows the location of atoms with the potential to form hydrogen bonds. These inter­actions are represented in two-dimensional fingerprint plots (Fig. 4), in which the cyan dots indicate the percentage of the inter­action over the total Hirshfeld surface.

Figure 3.

Figure 3

d norm mapped on the Hirshfeld surface, visualizing the inter­molecular contacts of the title compound. Dotted lines indicate hydrogen bonds.

Figure 4.

Figure 4

Hirshfeld surface two-dimensional fingerprint plot for the title compound (a) showing the: (b) H⋯C, (c) H⋯H, (d) H⋯Cl, (e) H⋯S, (f) H⋯N and (g) H⋯O inter­actions. The outline of the full fingerprint plots is shown in gray. d i (x axis) and d e (y axis) are the closest inter­nal and external distance (values in Å) from a given point on the Hirshfeld surface contacts.

Synthesis and crystallization  

The title compound was synthesized by the procdure reported by Kashtoh et al. (2014). 4-Chloro-1,3,4-oxa­diazole-2-thiol (212 mg,1 mmol) and triethyl amine (0.1 mL) were taken in ethanol (10 mL) and stirred for 10 min. 2-Bromo-4′-chloro­aceto­phenone (232 mg, 1 mmol) was then added slowly into the mixture and refluxed, while progress of the reaction was monitored by TLC. After completion of the reaction, the precipitate was filtered and washed with ethanol. The precipitate was crystallized from methanol to give the title compound in 344 mg, 94% yield.

Refinement  

Crystal data, data collection and structure refinement details are summarized in (Table 2). H atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined with C—H = 0.93–0.97 Å, and with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C16H10Cl2N2O2S
M r 365.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 19.1513 (7), 11.1589 (4), 7.5071 (3)
β (°) 92.088 (1)
V3) 1603.26 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.47 × 0.39 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2000)
T min, T max 0.784, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 11526, 3762, 3058
R int 0.022
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.132, 1.12
No. of reflections 3762
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.26

Computer programs: SMART and SAINT (Bruker, 2000), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017003978/rz5206sup1.cif

e-73-00524-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003978/rz5206Isup2.hkl

e-73-00524-Isup2.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017003978/rz5206Isup3.cml

CCDC reference: 1537363

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H10Cl2N2O2S F(000) = 744
Mr = 365.22 Dx = 1.513 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.1513 (7) Å Cell parameters from 3559 reflections
b = 11.1589 (4) Å θ = 3.2–27.7°
c = 7.5071 (3) Å µ = 0.55 mm1
β = 92.088 (1)° T = 273 K
V = 1603.26 (10) Å3 Block, colorless
Z = 4 0.47 × 0.39 × 0.11 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3762 independent reflections
Radiation source: fine-focus sealed tube 3058 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω scan θmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −25→25
Tmin = 0.784, Tmax = 0.945 k = −13→14
11526 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.069P)2 + 0.2639P] where P = (Fo2 + 2Fc2)/3
3762 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.31166 (3) 0.71345 (7) 0.43607 (10) 0.0711 (2)
Cl2 0.54160 (4) 0.62796 (12) −0.30547 (16) 0.1258 (4)
S1 0.09911 (2) 0.52100 (4) 0.14177 (7) 0.04411 (16)
O1 −0.01151 (8) 0.43467 (13) 0.3026 (2) 0.0556 (4)
O2 0.21861 (7) 0.57741 (12) 0.00900 (19) 0.0427 (3)
N1 0.14210 (9) 0.72473 (14) −0.0287 (2) 0.0457 (4)
N2 0.20649 (9) 0.75906 (16) −0.1028 (3) 0.0508 (4)
C1 −0.14356 (11) 0.50990 (18) 0.3877 (3) 0.0448 (5)
H1B −0.1303 0.4313 0.4130 0.054*
C2 −0.20957 (11) 0.54753 (19) 0.4258 (3) 0.0494 (5)
H2B −0.2410 0.4953 0.4766 0.059*
C3 −0.22851 (10) 0.6646 (2) 0.3873 (3) 0.0463 (5)
C4 −0.18228 (10) 0.74359 (19) 0.3131 (3) 0.0471 (5)
H4A −0.1958 0.8222 0.2889 0.057*
C5 −0.11620 (10) 0.70548 (17) 0.2752 (3) 0.0428 (4)
H5A −0.0849 0.7583 0.2250 0.051*
C6 −0.09600 (9) 0.58753 (16) 0.3118 (3) 0.0375 (4)
C7 −0.02636 (10) 0.53891 (16) 0.2705 (3) 0.0394 (4)
C8 0.02691 (9) 0.61879 (16) 0.1858 (3) 0.0410 (4)
H8A 0.0415 0.6828 0.2663 0.049*
H8B 0.0079 0.6537 0.0761 0.049*
C9 0.15279 (9) 0.61954 (16) 0.0337 (3) 0.0385 (4)
C10 0.24856 (10) 0.67088 (18) −0.0775 (3) 0.0419 (4)
C11 0.32086 (10) 0.6589 (2) −0.1300 (3) 0.0466 (5)
C12 0.35671 (13) 0.7597 (2) −0.1857 (3) 0.0611 (6)
H12A 0.3347 0.8340 −0.1876 0.073*
C13 0.42443 (14) 0.7499 (3) −0.2380 (4) 0.0743 (8)
H13A 0.4485 0.8174 −0.2747 0.089*
C14 0.45624 (12) 0.6400 (3) −0.2356 (4) 0.0760 (8)
C15 0.42210 (13) 0.5394 (3) −0.1805 (5) 0.0819 (9)
H15A 0.4444 0.4654 −0.1793 0.098*
C16 0.35398 (12) 0.5494 (2) −0.1265 (4) 0.0643 (7)
H16A 0.3305 0.4818 −0.0877 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0415 (3) 0.0839 (5) 0.0889 (5) 0.0064 (3) 0.0182 (3) −0.0073 (3)
Cl2 0.0440 (4) 0.1827 (11) 0.1531 (10) −0.0066 (5) 0.0351 (5) 0.0047 (8)
S1 0.0393 (3) 0.0369 (3) 0.0567 (4) 0.00321 (18) 0.0088 (2) 0.0004 (2)
O1 0.0519 (8) 0.0395 (8) 0.0761 (11) 0.0055 (6) 0.0118 (7) 0.0083 (7)
O2 0.0347 (6) 0.0408 (7) 0.0531 (9) 0.0030 (5) 0.0068 (6) 0.0007 (6)
N1 0.0402 (8) 0.0399 (9) 0.0575 (11) 0.0064 (7) 0.0061 (7) 0.0015 (7)
N2 0.0464 (9) 0.0448 (9) 0.0615 (12) 0.0013 (8) 0.0073 (8) 0.0058 (8)
C1 0.0474 (11) 0.0396 (10) 0.0477 (12) −0.0031 (8) 0.0055 (9) 0.0040 (8)
C2 0.0458 (11) 0.0505 (12) 0.0527 (13) −0.0098 (9) 0.0122 (9) 0.0030 (9)
C3 0.0349 (9) 0.0569 (12) 0.0472 (12) −0.0011 (8) 0.0050 (8) −0.0066 (9)
C4 0.0446 (11) 0.0421 (10) 0.0550 (13) 0.0043 (8) 0.0053 (9) −0.0002 (9)
C5 0.0415 (10) 0.0385 (10) 0.0488 (12) −0.0034 (7) 0.0067 (8) 0.0025 (8)
C6 0.0376 (9) 0.0369 (9) 0.0380 (11) −0.0020 (7) 0.0025 (7) −0.0035 (7)
C7 0.0407 (9) 0.0384 (10) 0.0393 (11) −0.0018 (7) 0.0024 (8) −0.0039 (7)
C8 0.0349 (9) 0.0374 (10) 0.0511 (12) −0.0001 (7) 0.0062 (8) −0.0050 (8)
C9 0.0341 (9) 0.0387 (9) 0.0428 (11) 0.0023 (7) 0.0020 (7) −0.0067 (8)
C10 0.0387 (9) 0.0428 (10) 0.0441 (12) −0.0009 (8) 0.0022 (8) −0.0023 (8)
C11 0.0380 (10) 0.0553 (12) 0.0466 (12) −0.0055 (8) 0.0017 (8) −0.0023 (9)
C12 0.0542 (13) 0.0643 (14) 0.0652 (16) −0.0073 (11) 0.0064 (11) 0.0097 (12)
C13 0.0563 (15) 0.094 (2) 0.0731 (19) −0.0240 (15) 0.0099 (12) 0.0140 (15)
C14 0.0358 (11) 0.115 (2) 0.0776 (19) −0.0088 (13) 0.0123 (11) −0.0057 (16)
C15 0.0443 (13) 0.0813 (19) 0.121 (3) 0.0050 (12) 0.0181 (14) −0.0089 (17)
C16 0.0429 (11) 0.0570 (13) 0.0939 (19) −0.0010 (10) 0.0144 (12) −0.0044 (13)

Geometric parameters (Å, º)

Cl1—C3 1.735 (2) C5—C6 1.396 (3)
Cl2—C14 1.740 (2) C5—H5A 0.9300
S1—C9 1.7279 (19) C6—C7 1.483 (2)
S1—C8 1.8014 (18) C7—C8 1.512 (2)
O1—C7 1.219 (2) C8—H8A 0.9700
O2—C9 1.364 (2) C8—H8B 0.9700
O2—C10 1.366 (2) C10—C11 1.459 (3)
N1—C9 1.277 (2) C11—C16 1.376 (3)
N1—N2 1.424 (2) C11—C12 1.390 (3)
N2—C10 1.281 (3) C12—C13 1.373 (3)
C1—C2 1.372 (3) C12—H12A 0.9300
C1—C6 1.394 (3) C13—C14 1.369 (4)
C1—H1B 0.9300 C13—H13A 0.9300
C2—C3 1.384 (3) C14—C15 1.370 (4)
C2—H2B 0.9300 C15—C16 1.385 (3)
C3—C4 1.381 (3) C15—H15A 0.9300
C4—C5 1.375 (3) C16—H16A 0.9300
C4—H4A 0.9300
C9—S1—C8 100.05 (9) C7—C8—H8B 110.8
C9—O2—C10 101.97 (14) S1—C8—H8B 110.8
C9—N1—N2 105.12 (15) H8A—C8—H8B 108.9
C10—N2—N1 106.51 (16) N1—C9—O2 113.80 (16)
C2—C1—C6 121.04 (18) N1—C9—S1 131.81 (14)
C2—C1—H1B 119.5 O2—C9—S1 114.39 (13)
C6—C1—H1B 119.5 N2—C10—O2 112.59 (17)
C1—C2—C3 118.81 (18) N2—C10—C11 128.91 (19)
C1—C2—H2B 120.6 O2—C10—C11 118.50 (17)
C3—C2—H2B 120.6 C16—C11—C12 119.5 (2)
C4—C3—C2 121.32 (18) C16—C11—C10 121.17 (19)
C4—C3—Cl1 119.47 (17) C12—C11—C10 119.4 (2)
C2—C3—Cl1 119.20 (16) C13—C12—C11 120.2 (3)
C5—C4—C3 119.66 (19) C13—C12—H12A 119.9
C5—C4—H4A 120.2 C11—C12—H12A 119.9
C3—C4—H4A 120.2 C14—C13—C12 119.5 (2)
C4—C5—C6 120.09 (18) C14—C13—H13A 120.3
C4—C5—H5A 120.0 C12—C13—H13A 120.3
C6—C5—H5A 120.0 C13—C14—C15 121.4 (2)
C1—C6—C5 119.08 (17) C13—C14—Cl2 119.2 (2)
C1—C6—C7 117.65 (17) C15—C14—Cl2 119.4 (2)
C5—C6—C7 123.26 (17) C14—C15—C16 119.2 (3)
O1—C7—C6 120.85 (17) C14—C15—H15A 120.4
O1—C7—C8 119.29 (17) C16—C15—H15A 120.4
C6—C7—C8 119.85 (16) C11—C16—C15 120.3 (2)
C7—C8—S1 104.72 (12) C11—C16—H16A 119.9
C7—C8—H8A 110.8 C15—C16—H16A 119.9
S1—C8—H8A 110.8
C9—N1—N2—C10 0.2 (2) C10—O2—C9—S1 179.80 (13)
C6—C1—C2—C3 0.1 (3) C8—S1—C9—N1 −11.3 (2)
C1—C2—C3—C4 −0.5 (3) C8—S1—C9—O2 169.15 (14)
C1—C2—C3—Cl1 −179.61 (17) N1—N2—C10—O2 −0.1 (2)
C2—C3—C4—C5 0.5 (3) N1—N2—C10—C11 179.0 (2)
Cl1—C3—C4—C5 179.62 (16) C9—O2—C10—N2 0.0 (2)
C3—C4—C5—C6 −0.1 (3) C9—O2—C10—C11 −179.28 (17)
C2—C1—C6—C5 0.3 (3) N2—C10—C11—C16 −166.0 (2)
C2—C1—C6—C7 −178.44 (19) O2—C10—C11—C16 13.1 (3)
C4—C5—C6—C1 −0.3 (3) N2—C10—C11—C12 13.5 (4)
C4—C5—C6—C7 178.38 (18) O2—C10—C11—C12 −167.4 (2)
C1—C6—C7—O1 −0.2 (3) C16—C11—C12—C13 0.5 (4)
C5—C6—C7—O1 −178.9 (2) C10—C11—C12—C13 −179.1 (2)
C1—C6—C7—C8 179.18 (17) C11—C12—C13—C14 0.3 (4)
C5—C6—C7—C8 0.5 (3) C12—C13—C14—C15 −0.6 (5)
O1—C7—C8—S1 4.4 (2) C12—C13—C14—Cl2 179.0 (2)
C6—C7—C8—S1 −174.98 (14) C13—C14—C15—C16 0.1 (5)
C9—S1—C8—C7 176.28 (13) Cl2—C14—C15—C16 −179.4 (2)
N2—N1—C9—O2 −0.2 (2) C12—C11—C16—C15 −0.9 (4)
N2—N1—C9—S1 −179.78 (16) C10—C11—C16—C15 178.6 (2)
C10—O2—C9—N1 0.2 (2) C14—C15—C16—C11 0.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···N1i 0.93 2.48 3.353 (3) 157

Symmetry code: (i) −x, y−1/2, −z+1/2.

References

  1. Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 193–201. [DOI] [PubMed]
  3. Fadda, A., Abdel-Rahman, A.-H., El-Sayed, W., Zidan, T. & Badria, F. (2011). Chem. Heterocycl. Compd, 47, 856–864.
  4. Jakobi, H., Ort, O., Schaper, W., Braun, R., Krautstrunk, G., Markl, M. & Bonin, W. (1999). US Patent No. 5925644.
  5. Jha, K. K., Samad, A., Kumar, Y., Shaharyar, M., Khosa, R., Jaim, J. & Bansal, S. (2009). Iran. J. Pharm. Res. 8, 163–167.
  6. Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454–5465. [DOI] [PubMed]
  7. Khan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Atta-ur-Rahman (2005). Bioorg. Med. Chem. 13, 3385–3395. [DOI] [PubMed]
  8. Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer-ul-Haq, Mesaik, M. A. & Iqbal Choudhary, M. (2011). Bioorg. Med. Chem. 19, 4286–4294. [DOI] [PubMed]
  9. Loetchutinat, C., Chau, F. & Mankhetkorn, S. (2003). Chem. Pharm. Bull. 51, 728–730. [DOI] [PubMed]
  10. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  11. Palaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107. [DOI] [PubMed]
  12. Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tyagi, M. & Kumar, A. (2002). Orient. J. Chem. 18, 125–130.
  17. Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274. [DOI] [PubMed]
  18. Xia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413. [DOI] [PMC free article] [PubMed]
  19. Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375–o3376.
  20. Zhang, X.-M., Qiu, M., Sun, J., Zhang, Y.-B., Yang, Y.-S., Wang, X.-L., Tang, J.-F. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 6518–6524. [DOI] [PubMed]
  21. Zou, X., Zhang, Z. & Jin, G. (2002). J. Chem. Res. (S), pp. 228–230.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017003978/rz5206sup1.cif

e-73-00524-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003978/rz5206Isup2.hkl

e-73-00524-Isup2.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017003978/rz5206Isup3.cml

CCDC reference: 1537363

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES