Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 21;73(Pt 4):556–559. doi: 10.1107/S2056989017003917

Ruthenium(II) carbonyl compounds with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand

Rajendhraprasad Tatikonda a, Matti Haukka a,*
PMCID: PMC5382621  PMID: 28435720

The RuII atoms in the crystal structures of two new potential catalyst precursors, [Ru(Tpy-Cl)(CO)2Cl][Ru(CO)3Cl3] and [Ru(Tpy-Cl)(CO)2Cl2] (Tpy-Cl = 4′-chloro 2,2′:6′,2′′-terpyridine-κ3 N), exhibit distorted octa­hedral coordination spheres.

Keywords: crystal structure, ruthenium, terpyridine ligand, carbonyl ligand

Abstract

Two ruthenium carbonyl complexes with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3), i.e. [RuCl(tpy-Cl)(CO)2][RuCl3(CO)3] (I) [systematic name: cis-di­carbonyl­chlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ3 N)ruthenium(II) fac-tricarbonyltri­chlorido­ruthenate(II)], and [RuCl2(tpy-Cl)(CO)2] (II) [cis-dicarbonyl-trans-di­chlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ2 N 1,N 1′)ruthenium(II)], were synthesized and characterized by single-crystal X-ray diffraction. The RuII atoms in both centrosymmetric structures (I) and (II) display similar, slightly distorted octa­hedral coordination spheres. The coordination sphere in the complex cation in compound (I) is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octa­hedral [Ru(CO)3Cl3] counter-anion. In the neutral compound (II), the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the RuII atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I) and (II), weak C—H⋯Cl inter­actions are observed.

Chemical context  

Ruthenium-carbonyl compounds with polypyridine ligands are known to be active catalysts for several catalytic processes including the reduction of carbon dioxide (Collomb-Dunand-Sauthier et al., 1994; Chardon-Noblat et al., 2002; Kuramochi et al., 2015), water–gas shift reaction (Luukkanen et al., 1999) and hydro­formyl­ation (Alvila et al., 1994). Many of these systems are metallopolymers obtained by reducing mononuclear precursors either chemically or electrochemically. The 2,2′-bi­pyridine ligand or its derivatives are the most commonly used ligand systems in these catalysts. It is also reported that possible substituents on polypyridine rings can have a strong impact on the catalytic behaviour of the compounds (Chardon-Noblat et al., 2001), which could offer a route to tailor the catalytic activity. Compounds with terpyridine and its derivatives as ligands together with carbonyl ligands are less commonly used (Deacon et al., 1984; Gibson et al., 1997; Ziessel et al., 2004), although it has also been shown that these types of compounds can be used to obtain active catalysts. Terpyridines are able to act as strong tridentate ligands because of the arrangement of the pyridine nitro­gen atoms. However, bidentate coordination is also known (Deacon et al., 1984; Kooijman et al., 2007; Amoroso et al., 2010).

In this context we report on the two title compounds, [RuCl(tpy-Cl)(CO)2][Ru(CO)3Cl3] (I) and [RuCl2(tpy-Cl)(CO)2] (II) with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3), which show both types of coordination, i.e. tridentate for (I) and bidentate for (II). The title compounds were synthesized by adopting a literature procedure (Homanen et al., 1996).graphic file with name e-73-00556-scheme1.jpg

Structural commentary  

Compound (I) is a salt and crystallizes in the monoclinic space group P21/c with four formula units in the unit cell. The coordination sphere of the RuII atom in the cation is a slightly distorted octa­hedron. The equatorial positions are occupied by three pyridine N atoms from the Tpy-Cl ligand and by one carbonyl ligand; axial positions are occupied by one chloride and one carbonyl ligand. The charge on the RuII atom is balanced by an octa­hedrally shaped fac-[Ru(CO)3Cl3] anion (Fig. 1). As expected, in the cation the Ru1—N5 bond to the central pyridine ring of the tpy-Cl ligand [2.019 (2) Å] is the shortest of the Ru—N bonds (Gibson et al., 1997; Ziessel et al., 2004). The Ru1—N1 [2.097 (2) Å] and Ru1—N15 [2.093 (2) Å] bonds involving the outer pyridine rings are lengthened to relieve strain and to retain a typical terpyridine bite angle of about 79°. Similar structures can be found in other ruthenium(II) complexes containing terpyridine ligands (Gibson et al., 1997). The Ru1—C2 bond of the equatorial carbonyl group [1.918 (3) Å] is longer than the Ru1—C1 bond [1.893 (3) Å] of the axial carbonyl group, indicating a slightly stronger trans-influence caused by the pyridine N atom. The Ru1—Cl1 distance [2.4279 (7) Å] is in the range of typical Ru—Cl bond lengths (Deacon et al., 1984; Ziessel et al., 2004). The corres­ponding Ru—Cl bond lengths in the [Ru(CO)3Cl3] counter-anion [2.4129 (7)–2.4212 (7) Å] also fall into the typical range of Ru—Cl bonds (Table 1).

Figure 1.

Figure 1

The mol­ecular structures of the cation and anion in compound (I). Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected bond lengths (Å) for (I) .

Ru1—C1 1.893 (3) Ru2—C20 1.902 (3)
Ru1—C2 1.918 (3) Ru2—C18 1.914 (3)
Ru1—N5 2.019 (2) Ru2—Cl4 2.4129 (7)
Ru1—N15 2.093 (2) Ru2—Cl5 2.4199 (7)
Ru1—N1 2.097 (2) Ru2—Cl3 2.4212 (7)
Ru1—Cl1 2.4279 (7) N1—C3 1.336 (3)
Ru2—C19 1.893 (3)    

Compound (II) is a neutral complex and crystallizes in the triclinic space group P Inline graphic with two formula units. The coordination sphere around the RuII atom is again a slightly distorted octa­hedron (Fig. 2). The four equatorial positions are occupied by two N atoms [Ru1—N1 = 2.105 (2) and Ru1—N2 = 2.157 (2) Å] from the Tpy-Cl ligand and by two carbonyl ligands [Ru1—C2 = 1.877 (3); Ru1—C1 = 1.895 (3) Å]. The chlorido ligands [Ru1—Cl1 = 2.3762 (8); Ru1—Cl2 = 2.4098 (7) Å] are placed at axial positions of the mol­ecule. The Ru1—N2 and Ru1—C1 bond lengths are slightly longer than Ru1—N1 and Ru1—C2 bond lengths due to the steric strain generated by the non-coordinating pyridine ring (Table 2).

Figure 2.

Figure 2

The mol­ecular structure of compound (II). Displacement ellipsoids are drawn at the 50% probability level.

Table 2. Selected bond lengths (Å) for (II) .

Ru1—C2 1.877 (3) Ru1—N2 2.157 (2)
Ru1—C1 1.895 (3) Ru1—Cl1 2.3762 (8)
Ru1—N1 2.105 (2) Ru1—Cl2 2.4098 (7)

The Tpy-Cl ligand in compound (I) is non-planar, despite coordination of all its three N atoms [dihedral angles between the mean planes of the central pyridine ring and the adjacent pyridine rings are 5.70 (8) and 13.28 (7)°]. In compound (II), the ring with the non-coordinating N atom is inclined considerably relative to the coordination plane of the two pyridine rings [dihedral angle 57.71 (9)°].

Supra­molecular features  

The packing of mol­ecules (I) and (II) are dominated by van der Waals inter­actions; packing plots are displayed in Fig. 3 for (I) and Fig. 4 for (II). Only weak hydrogen bonds and π–π contacts can be found in these structures. In both (I) and (II), some non-conventional hydrogen bonds between the aromatic C—H hydrogen atoms and chlorido ligands of neighboring mol­ecules do exist. The shortest contacts are summarized in Tables 3 and 4. In addition to these hydrogen bonds, the aromatic rings in structure (I) are involved in weak face-to-face π–π-inter­actions with considerable offsets. The shortest inter­molecular C—C distances range from 3.23 to 3.50 Å. In (II), an edge-to-face contact exists between C3—H3 and C16 of the neighboring mol­ecule. The distance between H3 and C16 is 2.89 Å and the angle C3—H3⋯C16 amounts to 134°. All inter­actions considered, three-dimensional network structures are obtained both for (I) and (II).

Figure 3.

Figure 3

The crystal packing of (I) in a view along the b axis.

Figure 4.

Figure 4

The crystal packing of (II) in a view along the b axis.

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl5i 0.95 2.76 3.664 (3) 158
C16—H16⋯Cl1ii 0.95 2.72 3.515 (3) 142
C5—H5⋯Cl3iii 0.95 2.82 3.553 (3) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2i 0.95 2.77 3.687 (3) 163

Symmetry code: (i) Inline graphic.

Synthesis and crystallization  

The title compounds were synthesized using a literature procedure (Homanen et al., 1996) and both compounds were obtained in a single pot reaction. A solution of [Ru(CO)3Cl2]2 (25.6 mg, 0.05 mmol) in 3 ml of THF was refluxed for 1 h under argon gas. After the reaction time, 26.7 mg (0.1 mmol) of tpy-Cl in 3 ml of THF was added to the above reaction mixture. The resulting mixture was refluxed for another 2 h in air with continuous stirring. During the reaction, the pale yellow solution turned to a reddish solution with a colourless precipitate. The precipitate was collected through centrifugation and the filtrate was evaporated for crystallization. Compound (I) was obtained as a major product originating from the precipitate and compound (II) was collected as a minor product from the filtrate. High-quality crystals of the salt (I) for single-crystal X-ray diffraction were obtained from DMSO solution and those of complex (II) were obtained as brown-coloured crystals from the filtrate.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms were positioned in calculated positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and U iso = 1.2U eq(C). The maximum electron density in complex (I) is located at 0.67 Å from atom C8 and in complex (II) at 1.28 Å from atom N2, respectively. The minimum density in complex (I) is located at 0.77 Å from atom Ru1 and in complex (II) at 0.87 Å from atom Ru1, respectively.

Table 5. Experimental details.

  (I) (II)
Crystal data
Chemical formula [RuCl(C15H10ClN3)(CO)2][Ru(CO)3Cl3] [RuCl2(C15H10ClN3(CO)2]
M r 751.70 495.70
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 123 123
a, b, c (Å) 14.3578 (4), 13.9158 (2), 13.2220 (3) 7.3019 (3), 8.5080 (3), 14.7702 (6)
α, β, γ (°) 90, 114.080 (3), 90 101.287 (3), 91.835 (3), 98.144 (3)
V3) 2411.86 (11) 889.09 (6)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.85 1.35
Crystal size (mm) 0.34 × 0.08 × 0.06 0.30 × 0.08 × 0.05
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013) Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.914, 1.000 0.300, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11072, 4864, 4264 7508, 3662, 3405
R int 0.023 0.036
(sin θ/λ)max−1) 0.625 0.630
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.050, 1.06 0.033, 0.088, 1.07
No. of reflections 4864 3662
No. of parameters 316 235
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.48 0.74, −1.43

Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015) and UCSF Chimera (Pettersen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017003917/wm5367sup1.cif

e-73-00556-sup1.cif (673.5KB, cif)

CCDC references: 1537190, 1537189

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[RuCl2(C15H10ClN3(CO)2] Z = 2
Mr = 495.70 F(000) = 488
Triclinic, P1 Dx = 1.852 Mg m3
a = 7.3019 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5080 (3) Å Cell parameters from 5231 reflections
c = 14.7702 (6) Å θ = 5.4–76.2°
α = 101.287 (3)° µ = 1.35 mm1
β = 91.835 (3)° T = 123 K
γ = 98.144 (3)° Plate, brown
V = 889.09 (6) Å3 0.30 × 0.08 × 0.05 mm

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer 3662 independent reflections
Radiation source: micro-source 3405 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.036
Detector resolution: 10.3953 pixels mm-1 θmax = 26.6°, θmin = 1.4°
φ scans and ω scans with κ offset h = −8→9
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2013) k = −7→10
Tmin = 0.300, Tmax = 1.000 l = −18→18
7508 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5543P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3662 reflections Δρmax = 0.74 e Å3
235 parameters Δρmin = −1.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.97989 (3) 0.30538 (2) 0.20165 (2) 0.01402 (9)
Cl2 1.19336 (10) 0.26275 (9) 0.31916 (5) 0.02134 (16)
Cl3 0.53931 (11) 0.29015 (9) 0.58174 (5) 0.02370 (16)
Cl1 0.76545 (11) 0.37329 (9) 0.09657 (5) 0.02563 (17)
O1 0.9433 (4) −0.0448 (3) 0.10113 (17) 0.0312 (5)
O2 1.2842 (4) 0.3556 (3) 0.07324 (19) 0.0380 (6)
N2 0.7827 (3) 0.2976 (3) 0.30696 (17) 0.0187 (5)
N1 1.0061 (3) 0.5492 (3) 0.27105 (17) 0.0183 (5)
N3 0.6478 (4) −0.1192 (3) 0.26366 (18) 0.0226 (5)
C2 1.1703 (5) 0.3368 (4) 0.1217 (2) 0.0242 (6)
C13 0.6151 (4) 0.0228 (4) 0.2446 (2) 0.0201 (6)
C12 0.6700 (4) 0.1661 (4) 0.3213 (2) 0.0190 (6)
C10 0.6327 (4) 0.2955 (4) 0.4765 (2) 0.0197 (6)
C16 0.5048 (5) −0.2483 (4) 0.1144 (2) 0.0280 (7)
H16 0.4700 −0.3452 0.0693 0.034*
C9 0.7419 (4) 0.4346 (4) 0.4621 (2) 0.0204 (6)
H9 0.7662 0.5293 0.5096 0.024*
C11 0.5945 (4) 0.1598 (4) 0.4060 (2) 0.0208 (6)
H11 0.5186 0.0646 0.4152 0.025*
C7 0.9276 (4) 0.5750 (3) 0.3533 (2) 0.0190 (6)
C8 0.8142 (4) 0.4312 (3) 0.3764 (2) 0.0176 (5)
C17 0.5949 (5) −0.2517 (4) 0.1970 (2) 0.0271 (7)
H17 0.6211 −0.3531 0.2076 0.032*
C1 0.9506 (4) 0.0845 (4) 0.1412 (2) 0.0226 (6)
C14 0.5230 (4) 0.0391 (4) 0.1639 (2) 0.0236 (6)
H14 0.5002 0.1420 0.1543 0.028*
C6 0.9447 (4) 0.7303 (4) 0.4081 (2) 0.0234 (6)
H6 0.8917 0.7472 0.4665 0.028*
C15 0.4656 (5) −0.1013 (4) 0.0977 (2) 0.0281 (7)
H15 0.4004 −0.0966 0.0418 0.034*
C3 1.0952 (4) 0.6760 (4) 0.2401 (2) 0.0235 (6)
H3 1.1461 0.6571 0.1812 0.028*
C5 1.0398 (5) 0.8593 (4) 0.3764 (2) 0.0261 (6)
H5 1.0533 0.9657 0.4132 0.031*
C4 1.1151 (4) 0.8330 (4) 0.2910 (2) 0.0248 (6)
H4 1.1790 0.9206 0.2678 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01375 (13) 0.01423 (13) 0.01338 (13) 0.00090 (9) 0.00123 (8) 0.00191 (9)
Cl2 0.0197 (3) 0.0204 (3) 0.0232 (3) 0.0047 (3) −0.0033 (3) 0.0023 (3)
Cl3 0.0266 (4) 0.0286 (4) 0.0179 (3) 0.0064 (3) 0.0063 (3) 0.0069 (3)
Cl1 0.0278 (4) 0.0256 (4) 0.0223 (4) 0.0028 (3) −0.0067 (3) 0.0043 (3)
O1 0.0374 (14) 0.0215 (11) 0.0310 (13) 0.0025 (10) 0.0078 (10) −0.0031 (10)
O2 0.0325 (14) 0.0397 (14) 0.0417 (15) 0.0039 (11) 0.0167 (12) 0.0068 (12)
N2 0.0167 (11) 0.0194 (12) 0.0205 (12) 0.0036 (9) 0.0012 (9) 0.0043 (9)
N1 0.0172 (12) 0.0179 (11) 0.0194 (12) 0.0015 (9) −0.0012 (9) 0.0042 (9)
N3 0.0228 (13) 0.0226 (12) 0.0224 (13) 0.0033 (10) 0.0023 (10) 0.0044 (10)
C2 0.0289 (16) 0.0192 (14) 0.0238 (15) 0.0035 (12) 0.0008 (12) 0.0030 (12)
C13 0.0175 (13) 0.0229 (14) 0.0191 (14) −0.0009 (11) 0.0027 (11) 0.0044 (11)
C12 0.0177 (13) 0.0197 (13) 0.0191 (14) 0.0010 (11) −0.0004 (11) 0.0043 (11)
C10 0.0205 (14) 0.0256 (14) 0.0141 (13) 0.0069 (11) 0.0014 (10) 0.0043 (11)
C16 0.0315 (17) 0.0237 (15) 0.0224 (15) −0.0075 (13) 0.0072 (13) −0.0033 (12)
C9 0.0210 (14) 0.0209 (14) 0.0193 (14) 0.0059 (11) −0.0018 (11) 0.0028 (11)
C11 0.0188 (14) 0.0207 (14) 0.0225 (14) 0.0012 (11) −0.0001 (11) 0.0050 (11)
C7 0.0164 (13) 0.0193 (13) 0.0209 (14) 0.0026 (11) −0.0003 (11) 0.0033 (11)
C8 0.0159 (13) 0.0180 (13) 0.0172 (13) 0.0027 (10) −0.0032 (10) 0.0004 (10)
C17 0.0279 (16) 0.0234 (15) 0.0296 (17) 0.0032 (13) 0.0070 (13) 0.0043 (13)
C1 0.0208 (14) 0.0271 (16) 0.0208 (14) 0.0037 (12) 0.0052 (11) 0.0069 (12)
C14 0.0248 (15) 0.0238 (14) 0.0207 (15) −0.0008 (12) −0.0013 (12) 0.0049 (12)
C6 0.0237 (15) 0.0224 (15) 0.0227 (15) 0.0030 (12) 0.0006 (12) 0.0017 (12)
C15 0.0309 (17) 0.0303 (16) 0.0195 (15) −0.0057 (14) −0.0022 (12) 0.0040 (12)
C3 0.0204 (14) 0.0259 (15) 0.0246 (15) 0.0018 (12) 0.0004 (12) 0.0074 (12)
C5 0.0246 (15) 0.0210 (15) 0.0305 (17) 0.0022 (12) −0.0014 (13) 0.0014 (12)
C4 0.0211 (14) 0.0201 (14) 0.0329 (17) −0.0008 (12) −0.0015 (12) 0.0078 (12)

Geometric parameters (Å, º)

Ru1—C2 1.877 (3) C16—C17 1.376 (5)
Ru1—C1 1.895 (3) C16—C15 1.387 (5)
Ru1—N1 2.105 (2) C16—H16 0.9500
Ru1—N2 2.157 (2) C9—C8 1.383 (4)
Ru1—Cl1 2.3762 (8) C9—H9 0.9500
Ru1—Cl2 2.4098 (7) C11—H11 0.9500
Cl3—C10 1.723 (3) C7—C6 1.395 (4)
O1—C1 1.135 (4) C7—C8 1.481 (4)
O2—C2 1.129 (4) C17—H17 0.9500
N2—C12 1.348 (4) C14—C15 1.390 (4)
N2—C8 1.361 (4) C14—H14 0.9500
N1—C3 1.345 (4) C6—C5 1.384 (4)
N1—C7 1.352 (4) C6—H6 0.9500
N3—C13 1.344 (4) C15—H15 0.9500
N3—C17 1.344 (4) C3—C4 1.384 (4)
C13—C14 1.391 (4) C3—H3 0.9500
C13—C12 1.490 (4) C5—C4 1.383 (5)
C12—C11 1.391 (4) C5—H5 0.9500
C10—C11 1.384 (4) C4—H4 0.9500
C10—C9 1.387 (4)
C2—Ru1—C1 85.52 (13) C8—C9—C10 117.9 (3)
C2—Ru1—N1 96.08 (11) C8—C9—H9 121.0
C1—Ru1—N1 178.40 (10) C10—C9—H9 121.0
C2—Ru1—N2 171.98 (12) C10—C11—C12 118.4 (3)
C1—Ru1—N2 101.47 (11) C10—C11—H11 120.8
N1—Ru1—N2 76.94 (10) C12—C11—H11 120.8
C2—Ru1—Cl1 90.26 (10) N1—C7—C6 120.8 (3)
C1—Ru1—Cl1 93.67 (10) N1—C7—C8 115.5 (3)
N1—Ru1—Cl1 86.24 (7) C6—C7—C8 123.5 (3)
N2—Ru1—Cl1 93.17 (7) N2—C8—C9 122.6 (3)
C2—Ru1—Cl2 92.02 (10) N2—C8—C7 115.3 (3)
C1—Ru1—Cl2 92.10 (10) C9—C8—C7 122.0 (3)
N1—Ru1—Cl2 87.93 (7) N3—C17—C16 123.4 (3)
N2—Ru1—Cl2 83.87 (7) N3—C17—H17 118.3
Cl1—Ru1—Cl2 173.94 (3) C16—C17—H17 118.3
C12—N2—C8 118.4 (3) O1—C1—Ru1 175.0 (3)
C12—N2—Ru1 126.9 (2) C15—C14—C13 117.3 (3)
C8—N2—Ru1 112.57 (19) C15—C14—H14 121.3
C3—N1—C7 119.5 (3) C13—C14—H14 121.3
C3—N1—Ru1 125.0 (2) C5—C6—C7 119.1 (3)
C7—N1—Ru1 115.54 (19) C5—C6—H6 120.4
C13—N3—C17 116.5 (3) C7—C6—H6 120.4
O2—C2—Ru1 179.6 (3) C16—C15—C14 119.1 (3)
N3—C13—C14 124.5 (3) C16—C15—H15 120.5
N3—C13—C12 114.9 (3) C14—C15—H15 120.5
C14—C13—C12 120.4 (3) N1—C3—C4 122.3 (3)
N2—C12—C11 122.1 (3) N1—C3—H3 118.9
N2—C12—C13 120.7 (3) C4—C3—H3 118.9
C11—C12—C13 117.1 (3) C4—C5—C6 119.8 (3)
C11—C10—C9 120.4 (3) C4—C5—H5 120.1
C11—C10—Cl3 119.0 (2) C6—C5—H5 120.1
C9—C10—Cl3 120.6 (2) C5—C4—C3 118.4 (3)
C17—C16—C15 119.1 (3) C5—C4—H4 120.8
C17—C16—H16 120.5 C3—C4—H4 120.8
C15—C16—H16 120.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···Cl2i 0.95 2.77 3.687 (3) 163

Symmetry code: (i) −x+2, −y+1, −z+1.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Alvila, L., Pursiainen, J., Kiviaho, J., Pakkanen, T. A. & Krause, O. (1994). J. Mol. Catal. 91, 335–342.
  3. Amoroso, A. J., Banu, A., Coogan, M. P., Edwards, P. G., Hossain, G. & Malik, K. M. A. (2010). Dalton Trans. 39, 6993–7003. [DOI] [PubMed]
  4. Chardon-Noblat, S., Da Costa, P., Deronzier, A., Maniguet, S. & Ziessel, R. (2002). J. Electroanal. Chem. 529, 135–144.
  5. Chardon-Noblat, S., Deronzier, A. & Ziessel, R. (2001). Collect. Czech. Chem. Commun. 66, 207–227.
  6. Collomb-Dunand-Sauthier, M.-N., Deronzier, A. & Ziessel, R. (1994). J. Chem. Soc. Chem. Commun. pp. 189–191.
  7. Deacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. & White, A. H. (1984). Aust. J. Chem. 37, 929–945.
  8. Gibson, D. H., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1997). Organometallics, 16, 4421–4427.
  9. Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081–4084.
  10. Kooijman, H., Spek, A. L., Mulder, A. & Reinhoudt, D. N. (2007). Private communication (CCDC numbers 666468 and 666615). CCDC, Cambridge, England.
  11. Kuramochi, Y., Fukaya, K., Yoshida, M. & Ishida, M. (2015). Chem. Eur. J. 21, 10049–10060. [DOI] [PubMed]
  12. Luukkanen, S., Homanen, P., Haukka, M., Pakkanen, T. A., Deronzier, A., Chardon-Noblat, S., Zsoldos, D. & Ziessel, R. (1999). Appl. Catal. Gen. 185, 157–164.
  13. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  14. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017003917/wm5367sup1.cif

e-73-00556-sup1.cif (673.5KB, cif)

CCDC references: 1537190, 1537189

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES