Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 24;73(Pt 4):564–568. doi: 10.1107/S2056989017003887

1-Butyl-1-chloro-3-methyl-3H-2,1λ4-benzoxa­tellurole: crystal structure and Hirshfeld analysis

Julio Zukerman-Schpector a,*, Rodrigo Cunha b, Álvaro T Omori b, Lucas Sousa Madureira a, Edward R T Tiekink c
PMCID: PMC5382623  PMID: 28435722

Two chemically similar mol­ecules comprise the asymmetric unit and these are connected via Te⋯O secondary bonding. The coordination geometry for each mol­ecule is based on an octa­hedron with the lone-pair of electrons occupying a position opposite to the n-butyl group.

Keywords: crystal structure, tellurium, Hirshfeld surface analysis, heavy-atom chirality

Abstract

Two independent mol­ecules comprise the asymmetric unit in the title benzoxatellurole compound, C12H17ClOTe. The mol­ecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by Te⋯O inter­actions, leading to a {⋯Te—O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Inter­estingly, the TeIV atoms exhibit opposite chirality. The major difference between the independent mol­ecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one mol­ecule and is twisted about the O—C(methine) bond in the other. No directional inter­molecular inter­actions are noted in the mol­ecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent mol­ecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.

Chemical context  

Tellurium is not the first element that comes to mind when considering the modern pharmacopoeia (Tiekink, 2012). However, investigations into pharmaceutical applications of compounds of this generally regarded as relatively non-toxic element (Nogueira et al., 2004) date back to the times of Sir Alexander Fleming who tested the efficacy of potassium tellurite, K2[TeO3], against microbes, such as penicillin-insensitive bacteria (Fleming, 1932). It is in fact another salt, ammonium tri­chloro­(di­oxy­ethyl­ene-O,O′)tellurate, [NH4][(OCH2CH2O)TeCl3] (Albeck et al., 1998), also known as AS-101, that has attracted the most attention as a potential tellurium-based pharmaceutical, being in clinical trials for the treatment of psoriasis (Halpert & Sredni, 2014). Other potential applications of AS-101 include its use as an anti-inflammatory agent (Brodsky, et al., 2010), as a topical treatment for human papilloma virus (Friedman et al., 2009) and its ability to inhibit angiogenesis (Sredni, 2012). The anti-cancer potential of tellurium compounds has also attracted attention (Seng & Tiekink, 2012; Silberman et al., 2016). The cation in AS-101 has long been known to be a specific inhibitor of both papain and cathepsin B, i.e. cysteine proteases, by forming a covalent Te—S(cysteine) bond (Albeck et al., 1998). Organotellurium compounds also inhibit cathepsin B (Cunha et al., 2005) and docking studies confirm this hypothesis (Caracelli et al., 2012, 2016). It was in this context that the title compound, (I), was prepared. Herein, the crystal and mol­ecular structures of (I) are described as well as an analysis of its Hirshfeld surface. Finally, a preliminary inhibition assay on (I) against cathepsin B has been performed.graphic file with name e-73-00564-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises two independent mol­ecules, which are connected into a loosely associated dimer via secondary Te⋯O inter­actions, as shown in Fig. 1. The immediate geometry for the TeIV atom in the Te1-containing mol­ecule is defined by chlorido, oxygen and carbon (within the oxatellurole ring) and n-butyl alpha-carbon atoms. While the bridging-O2 atom forms a significantly longer Te⋯O2 bond than the Te—O1 bond, Table 1, it must be included in the coordination geometry, which is then best described as being distorted square pyramidal. This arrangement accommodates a stereochemically active lone-pair of electrons in the position trans to the n-butyl group. The coordination geometry for the Te2-containing mol­ecule is essentially the same.

Figure 1.

Figure 1

The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The mol­ecules associate via secondary Te⋯O bonding shown as dashed bonds.

Table 1. Selected geometric parameters (Å, °).

Te1—Cl1 2.6137 (17) Te2—Cl2 2.5944 (17)
Te1—O1 2.021 (4) Te2—O2 2.010 (5)
Te1—C8 2.107 (6) Te2—C20 2.108 (6)
Te1—C9 2.138 (5) Te2—C21 2.136 (6)
Te1—O2 2.945 (4) Te2—O1 2.977 (4)
       
Cl1—Te1—O1 171.04 (13) Cl2—Te2—O2 170.22 (14)
O1—Te1—C8 80.4 (2) O2—Te2—C20 80.5 (2)
C8—Te1—O2 145.0 (2) C20—Te2—O1 145.38 (19)

The bond lengths about the TeIV atoms in the independent mol­ecules are similar, Table 1. However, the Te1—Cl1 bond length is longer by approximately 0.02 Å than the chemically equivalent Te—Cl2 bond. The three remaining ‘short’ bond lengths are equal within experimental error. The disparity in the Te—Cl bond lengths is probably compensated by the Te⋯O secondary bond, which is shorter, by approximately 0.03 Å, in the Te1-mol­ecule. The key pairs of bond angles for the mol­ecules are essentially the same with the major difference, i.e. 0.8°, seen in the Cl—Te—Olong angle. A distinguishing feature of the independent mol­ecules is noted in the conformation of the five-membered, chelate rings. Thus, in the Te1-mol­ecule, the chelate ring has the form of an envelope with the flap atom being the O1 atom [the O1 atom lies 0.254 (8) Å out of the plane through the remaining atoms; r.m.s. deviation = 0.0107 Å]. For the Te2-mol­ecule, the chelate ring is twisted about the O2—C13 bond, as seen in the Te2—O2—C13—C15 torsion angle of 12.1 (7)°.

The central {⋯Te—O}2 core of the dimeric aggregate, Fig. 1, is almost planar (r.m.s. deviation = 0.0106 Å) and has the form of a parallelogram with distinctive edge lengths of approximately 2.0 and 3.0 Å, reflecting the disparity of the Te⋯O inter­actions. To a first approximation, the fused phenyl ring in each mol­ecule, (C3–C8) and (C13–C20), is co-planar with the core, forming dihedral angles of 14.2 (2) and 13.6 (3)°, respectively; the dihedral angle between the phenyl rings is 8.3 (3)°. As the n-butyl groups lie to either side of the dimeric aggregate, there is a suggestion that the independent mol­ecules are related across a pseudo centre of inversion. However, the configuration of the chiral-C2 and C13 atoms in the Te1- and Te-mol­ecules, respectively, is R. This is highlighted in the overlay diagram shown in Fig. 2. Also highlighted is that the tellurium atoms have opposite chirality. When projected down the Te—C(n-but­yl) bond, the chirality about the Te1 atom is S and that about Te2, R.

Figure 2.

Figure 2

An overlay diagram of the Te1- and Te2-containing mol­ecules, shown as red and blue images, respectively. The mol­ecules have been overlapped so that the phenyl rings are coincident.

Supra­molecular features  

Beyond the secondary Te⋯O secondary contacts, leading to dimeric aggregates, Fig. 1, no directional inter­actions, according to the criteria in PLATON (Spek, 2009), are apparent in the crystal of (I). A view of the unit-cell contents is shown in Fig. 3.

Figure 3.

Figure 3

A view in projection down the a axis of the mol­ecular packing in (I).

Hirshfeld surface analysis  

An analysis of the Hirshfeld surface for (I) was conducted using protocols established earlier (Jotani et al., 2016). The overall two-dimensional fingerprint plot for the asymmetric unit is shown in Fig. 4 a and those for the individual Te1- and Te2-containing mol­ecules are shown in Fig. 4 b and c. The shape-index surface properties are also illustrated in Fig. 4. These confirm the absence of significant directional inter­actions in the crystal.

Figure 4.

Figure 4

Two-dimensional fingerprint plots and shape index surface properties of the Hirshfeld surface analysis for (a) (I), (b) the Te1-mol­ecule in (I) and (c) the Te2-mol­ecule in (I).

Referring to Fig. 5 and Table 2, the Hirshfeld surface is dominated by H⋯H inter­actions, contributing around 70% to the overall surface of the asymmetric unit and about 65% for each independent mol­ecule. While not within the sum of the respective van de Waals radii, the C—H⋯Cl contacts make the next greatest contribution to the overall surface, i.e. ca 15%. Others inter­actions each contribute less than 5% to the Hirshfeld surface. It should be noted that the C—H⋯O contacts, Te⋯O secondary inter­actions and most of the C—H⋯Te contacts are formed between the two independent mol­ecules, thus they are overlapped and do not contribute to surface area of the asymmetric unit.

Figure 5.

Figure 5

Charts of the relative percentage contributions of the inter­molecular contacts to the Hirshfeld surface area for (a) (I), (b) the Te1-mol­ecule in (I) and (c) the Te2-mol­ecule in (I).

Table 2. Percentage contributions of the different inter­molecular contacts to the Hirshfeld surface in (I), Te1-mol­ecule in (I) and Te2-mol­ecule in (I).

Contact overall (I) Te1-mol­ecule in (I) Te-2 mol­ecule in (I)
H⋯H 70.3 65.1 66.2
H⋯C⋯l/Cl⋯H 16.6 15.7 15.4
H⋯π/π⋯H 5.5 4.1 4.2
Te⋯π/π⋯Te 4.0 3.7 3.6
H⋯Te/Te⋯H 0.4 3.3 2.6
H⋯O/O⋯H 0.0 2.9 2.9
O⋯Te/Te⋯O 0.0 1.7 1.6
π–π/π–π 1.7 1.5 1.5
Others 1.5 2.0 2.0

The main differences between the surface areas of the independent mol­ecules are in the inter­actions of the type H⋯H and C—H⋯Cl. Referring to Fig. 6, the red circles on the fingerprint plots delineated into H⋯H, Fig. 6 a and H⋯Cl/Cl⋯H contacts, Fig. 6 b, highlight the distinctive features of the inter­actions for the two mol­ecules. For example, short H⋯H inter­actions for the Te2-mol­ecule, Fig. 6 a, occur at shorter distances that those of the Te1-mol­ecules. With regard to the H⋯Cl/Cl⋯H contacts, there is a wider spread at lower d e + d i for the Te1- cf. the Te2-mol­ecule.

Figure 6.

Figure 6

Two-dimensional fingerprint plots delineated into (a) H⋯H contacts and (b) H⋯Cl/Cl⋯H contacts for the Te1- and Te2-mol­ecules. The red circles highlight regions distinguishing the two independent mol­ecules.

Database survey  

A search of the Cambridge Crystallographic Database (Groom et al., 2016) reveals there are only 28 analogous structures featuring the TeOC3 donor set as in (I) without the bond type being specified. The number of ‘hits’ reduces to five with the inclusion of the aromatic ring in the side chain. Of the latter, the most closely related compound is 1-bromo-1-butyl-3H-2,1-benzoxatellurol (Maksimenko et al., 1994), which is in fact very similar to (I), being derived from this by substituting the tellurium-bound chlorido atom with bromido and the removal of the methyl group. Here, the five-membered chelate ring is strictly planar.

Inhibition of cathepsin B  

Compound (I) was screened for its ability to inhibit cathepsin B employing standard literature procedures (Cunha et al., 2005). The determined value of the inhibition constant was 372 ± 40 M −1 s−1, indicating some inhibitory potential, but not as potent as for other organotellurium(IV) compounds studied earlier (Cunha et al., 2005).

Synthesis and crystallization  

The compound was prepared following a literature procedure (Engman, 1984). The precursor chalcogenide, [2-(R)-MeCH(OH)]C6H4Te(nBu) (1.52 g, 5 mmol), prepared as in the literature (Piovan et al., 2011), was dissolved in dry di­chloro­methane (20 ml) and cooled to 253 K. To the stirred, cooled solution, sulfuryl chloride (0.4 ml, 5 mmol) dissolved in di­chloro­methane (5 ml) was added dropwise. The stirring was maintained for 20 minutes at 273 K and the solvent was then removed under reduced pressure. The oily product thus obtained was purified by crystallization from a mixture of dry benzene and pentane, yielding colourless crystals in 89% yield, m.p. 641.3–641.4 K. Analysis calculated for C12H17OClTe: C, 42.35, H, 5.03; Found C, 42.28, H, 4.98%. [α]D 26 = +45.5° (CHCl3, c = 1.97). 1H (500.13 MHz, CDCl3, ppm) δ 8.20 (d, 3 J 7.6 Hz, 1H), 7.6–7.5 (m, 2H), 7.31 (d, 3 J 7.2 Hz, 1H), 5.59 (q, 3 J 6.3 Hz, 1H), 3.31 (t, 3 J 8.1 Hz, 2H), 1.90 (quin, 3 J 7.2 Hz, 2H), 1.59 (d, 3 J 6.45 Hz, 3H), 1.46 (sext, 3 J 7.4 Hz, 2H), 0.93 (t, 3 J 7.4 Hz, 3H). 13C (125 MHz, CDCl3, ppm) δ 148.1, 131.6, 131.2, 128.7, 127.8, 125.4, 75.5 (Br), 45.4, 28.4, 24.6, 23.7, 13.0. 125Te (157.85 MHz, CDCl3-d 6, ppm) δ 847.2 (minor), 801.1 (major). 125Te (157.85 MHz, DMSO-d 6, ppm) δ 1201.5 (minor), 1189.1 (major).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C12H17ClOTe
M r 340.30
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 8.3663 (2), 13.0442 (4), 12.5363 (2)
β (°) 103.460 (2)
V3) 1330.53 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.34 × 0.33 × 0.23
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Gaussian (Coppens et al., 1965)
T min, T max 0.481, 0.550
No. of measured, independent and observed [I > 2σ(I)] reflections 9220, 5115, 4998
R int 0.061
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.076, 1.02
No. of reflections 5115
No. of parameters 275
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.82
Absolute structure Flack x determined using 1908 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.05 (3)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017003887/hg5483sup1.cif

e-73-00564-sup1.cif (760.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003887/hg5483Isup2.hkl

e-73-00564-Isup2.hkl (407KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017003887/hg5483Isup3.cml

CCDC reference: 1537011

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Brazilian agency National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2).

supplementary crystallographic information

Crystal data

C12H17ClOTe F(000) = 664
Mr = 340.30 Dx = 1.699 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.3663 (2) Å Cell parameters from 5903 reflections
b = 13.0442 (4) Å θ = 1.0–27.5°
c = 12.5363 (2) Å µ = 2.41 mm1
β = 103.460 (2)° T = 293 K
V = 1330.53 (6) Å3 Slab, colourless
Z = 4 0.34 × 0.33 × 0.23 mm

Data collection

Nonius KappaCCD diffractometer 4998 reflections with I > 2σ(I)
CCD rotation images, thick slices scans Rint = 0.061
Absorption correction: gaussian (Coppens et al., 1965) θmax = 27.5°, θmin = 2.5°
Tmin = 0.481, Tmax = 0.550 h = −10→8
9220 measured reflections k = −15→16
5115 independent reflections l = −16→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.6419P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.43 e Å3
5115 reflections Δρmin = −0.82 e Å3
275 parameters Absolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Te1 0.47914 (4) 0.44547 (2) 0.33996 (3) 0.04143 (11)
Cl1 0.6469 (2) 0.30011 (15) 0.45946 (16) 0.0664 (4)
O1 0.3777 (5) 0.5726 (4) 0.2598 (3) 0.0512 (10)
C1 0.4636 (7) 0.6665 (4) 0.2894 (6) 0.0475 (12)
H1 0.4101 0.7045 0.3388 0.057*
C2 0.4470 (10) 0.7276 (6) 0.1836 (7) 0.075 (2)
H2A 0.5040 0.6927 0.1361 0.112*
H2B 0.4936 0.7946 0.2005 0.112*
H2C 0.3328 0.7340 0.1476 0.112*
C3 0.6380 (6) 0.6452 (5) 0.3476 (5) 0.0458 (11)
C4 0.7594 (8) 0.7216 (6) 0.3717 (7) 0.0652 (17)
H4 0.7345 0.7880 0.3462 0.078*
C5 0.9147 (8) 0.6994 (8) 0.4326 (7) 0.072 (2)
H5 0.9941 0.7505 0.4491 0.086*
C6 0.9523 (7) 0.5984 (9) 0.4698 (6) 0.075 (3)
H6 1.0570 0.5831 0.5113 0.090*
C7 0.8366 (6) 0.5227 (6) 0.4454 (5) 0.0533 (15)
H7 0.8622 0.4560 0.4695 0.064*
C8 0.6800 (6) 0.5467 (5) 0.3842 (4) 0.0416 (10)
C9 0.3754 (6) 0.4771 (5) 0.4770 (4) 0.0474 (13)
H9A 0.2963 0.5322 0.4567 0.057*
H9B 0.3154 0.4168 0.4909 0.057*
C10 0.4927 (6) 0.5063 (6) 0.5816 (5) 0.0510 (14)
H10A 0.5533 0.5668 0.5691 0.061*
H10B 0.5711 0.4511 0.6040 0.061*
C11 0.4067 (7) 0.5281 (5) 0.6735 (4) 0.0479 (14)
H11A 0.3329 0.5858 0.6524 0.057*
H11B 0.3405 0.4691 0.6824 0.057*
C12 0.5220 (8) 0.5516 (9) 0.7815 (5) 0.0674 (18)
H12A 0.6033 0.4984 0.7992 0.101*
H12B 0.4614 0.5553 0.8376 0.101*
H12C 0.5753 0.6161 0.7767 0.101*
Te2 0.01522 (4) 0.55421 (2) 0.17723 (3) 0.04226 (11)
Cl2 −0.1556 (2) 0.69208 (15) 0.05090 (16) 0.0666 (4)
O2 0.1199 (5) 0.4303 (4) 0.2604 (4) 0.0583 (11)
C13 0.0191 (7) 0.3453 (5) 0.2705 (5) 0.0530 (13)
H13 0.0032 0.3452 0.3455 0.064*
C14 0.1031 (10) 0.2471 (6) 0.2538 (9) 0.083 (3)
H14A 0.1177 0.2445 0.1801 0.125*
H14B 0.0371 0.1901 0.2661 0.125*
H14C 0.2085 0.2439 0.3045 0.125*
C15 −0.1500 (7) 0.3589 (5) 0.1920 (5) 0.0498 (13)
C16 −0.2697 (8) 0.2822 (6) 0.1731 (6) 0.0627 (16)
H16 −0.2486 0.2191 0.2080 0.075*
C17 −0.4201 (8) 0.3008 (7) 0.1021 (6) 0.0646 (19)
H17 −0.4989 0.2492 0.0881 0.077*
C18 −0.4547 (7) 0.3946 (7) 0.0519 (5) 0.0585 (17)
H18 −0.5568 0.4059 0.0048 0.070*
C19 −0.3397 (7) 0.4717 (5) 0.0709 (5) 0.0508 (14)
H19 −0.3636 0.5356 0.0380 0.061*
C20 −0.1858 (5) 0.4524 (5) 0.1407 (4) 0.0413 (10)
C21 0.1184 (6) 0.5194 (6) 0.0408 (5) 0.0546 (16)
H21A 0.1644 0.5819 0.0185 0.066*
H21B 0.2084 0.4717 0.0652 0.066*
C22 0.0033 (7) 0.4747 (5) −0.0574 (5) 0.0485 (14)
H22A −0.0914 0.5194 −0.0794 0.058*
H22B −0.0352 0.4088 −0.0380 0.058*
C23 0.0837 (7) 0.4607 (6) −0.1542 (5) 0.0506 (13)
H23A 0.1271 0.5262 −0.1710 0.061*
H23B 0.1753 0.4137 −0.1330 0.061*
C24 −0.0311 (9) 0.4209 (8) −0.2549 (6) 0.079 (3)
H24A −0.0737 0.3556 −0.2392 0.118*
H24B 0.0266 0.4130 −0.3122 0.118*
H24C −0.1203 0.4682 −0.2780 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Te1 0.04719 (18) 0.0443 (2) 0.02938 (15) 0.00273 (13) 0.00198 (11) −0.00116 (15)
Cl1 0.0837 (11) 0.0546 (9) 0.0580 (10) 0.0195 (8) 0.0106 (8) 0.0102 (7)
O1 0.0467 (18) 0.050 (3) 0.047 (2) 0.0016 (17) −0.0085 (15) 0.0090 (18)
C1 0.052 (3) 0.033 (2) 0.055 (3) 0.004 (2) 0.007 (2) −0.003 (3)
C2 0.079 (4) 0.060 (4) 0.076 (5) 0.000 (3) 0.000 (4) 0.025 (4)
C3 0.047 (2) 0.049 (3) 0.042 (3) −0.001 (2) 0.012 (2) −0.003 (2)
C4 0.065 (4) 0.059 (4) 0.070 (5) −0.014 (3) 0.012 (3) −0.002 (3)
C5 0.046 (3) 0.099 (6) 0.068 (5) −0.022 (3) 0.009 (3) −0.004 (4)
C6 0.034 (3) 0.133 (8) 0.054 (4) 0.001 (4) 0.005 (2) −0.014 (5)
C7 0.039 (2) 0.078 (5) 0.042 (3) 0.010 (2) 0.008 (2) 0.001 (3)
C8 0.041 (2) 0.055 (3) 0.030 (2) 0.003 (2) 0.0091 (17) 0.000 (2)
C9 0.040 (2) 0.067 (4) 0.034 (2) −0.001 (2) 0.0074 (19) −0.004 (2)
C10 0.039 (2) 0.077 (4) 0.037 (3) 0.000 (2) 0.008 (2) −0.010 (3)
C11 0.047 (2) 0.061 (4) 0.036 (3) 0.002 (2) 0.010 (2) −0.002 (2)
C12 0.062 (3) 0.096 (5) 0.043 (3) 0.002 (4) 0.008 (2) −0.022 (4)
Te2 0.04777 (18) 0.0432 (2) 0.03135 (16) 0.00212 (13) 0.00019 (12) −0.00352 (14)
Cl2 0.0768 (10) 0.0535 (9) 0.0646 (10) 0.0164 (8) 0.0063 (8) 0.0099 (8)
O2 0.052 (2) 0.056 (3) 0.055 (2) −0.001 (2) −0.0130 (17) 0.008 (2)
C13 0.060 (3) 0.056 (3) 0.037 (3) 0.001 (3) −0.001 (2) 0.001 (3)
C14 0.073 (4) 0.058 (4) 0.110 (7) 0.012 (3) 0.003 (4) −0.004 (4)
C15 0.052 (3) 0.054 (3) 0.041 (3) −0.005 (2) 0.005 (2) 0.001 (2)
C16 0.063 (3) 0.065 (4) 0.059 (4) −0.009 (3) 0.013 (3) 0.002 (3)
C17 0.055 (3) 0.081 (5) 0.059 (4) −0.021 (3) 0.013 (3) −0.017 (4)
C18 0.038 (3) 0.087 (5) 0.050 (3) −0.003 (3) 0.009 (2) −0.014 (3)
C19 0.047 (3) 0.067 (4) 0.037 (3) 0.010 (2) 0.006 (2) 0.000 (2)
C20 0.040 (2) 0.054 (3) 0.029 (2) 0.002 (2) 0.0053 (16) −0.006 (2)
C21 0.042 (2) 0.083 (5) 0.037 (3) −0.001 (3) 0.005 (2) −0.010 (3)
C22 0.046 (2) 0.061 (4) 0.039 (3) 0.003 (2) 0.010 (2) −0.008 (2)
C23 0.049 (2) 0.062 (4) 0.041 (3) 0.005 (2) 0.012 (2) 0.001 (3)
C24 0.068 (4) 0.121 (9) 0.045 (3) 0.015 (4) 0.008 (3) −0.019 (4)

Geometric parameters (Å, º)

Te1—Cl1 2.6137 (17) C11—H11A 0.9700
Te1—O1 2.021 (4) C11—H11B 0.9700
Te1—C8 2.107 (6) C12—H12A 0.9600
Te1—C9 2.138 (5) C12—H12B 0.9600
Te1—O2 2.945 (4) C12—H12C 0.9600
Te2—Cl2 2.5944 (17) O2—C13 1.416 (8)
Te2—O2 2.010 (5) C13—C14 1.499 (10)
Te2—C20 2.108 (6) C13—C15 1.534 (7)
Te2—C21 2.136 (6) C13—H13 0.9800
Te2—O1 2.977 (4) C14—H14A 0.9600
O1—C1 1.424 (7) C14—H14B 0.9600
C1—C3 1.497 (7) C14—H14C 0.9600
C1—C2 1.526 (10) C15—C20 1.379 (9)
C1—H1 0.9800 C15—C16 1.396 (9)
C2—H2A 0.9600 C16—C17 1.383 (9)
C2—H2B 0.9600 C16—H16 0.9300
C2—H2C 0.9600 C17—C18 1.376 (12)
C3—C8 1.382 (9) C17—H17 0.9300
C3—C4 1.405 (9) C18—C19 1.374 (10)
C4—C5 1.376 (10) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.401 (7)
C5—C6 1.408 (14) C19—H19 0.9300
C5—H5 0.9300 C21—C22 1.494 (7)
C6—C7 1.367 (11) C21—H21A 0.9700
C6—H6 0.9300 C21—H21B 0.9700
C7—C8 1.391 (7) C22—C23 1.529 (7)
C7—H7 0.9300 C22—H22A 0.9700
C9—C10 1.493 (7) C22—H22B 0.9700
C9—H9A 0.9700 C23—C24 1.490 (9)
C9—H9B 0.9700 C23—H23A 0.9700
C10—C11 1.521 (7) C23—H23B 0.9700
C10—H10A 0.9700 C24—H24A 0.9600
C10—H10B 0.9700 C24—H24B 0.9600
C11—C12 1.500 (8) C24—H24C 0.9600
Cl1—Te1—O1 171.04 (13) C10—C11—H11A 108.8
O1—Te1—C8 80.4 (2) C12—C11—H11B 108.8
C8—Te1—O2 145.0 (2) C10—C11—H11B 108.8
Cl2—Te2—O2 170.22 (14) H11A—C11—H11B 107.7
O2—Te2—C20 80.5 (2) C11—C12—H12A 109.5
C20—Te2—O1 145.38 (19) C11—C12—H12B 109.5
O1—Te1—O2 66.99 (14) H12A—C12—H12B 109.5
O1—Te1—C9 92.2 (2) C11—C12—H12C 109.5
C8—Te1—C9 96.7 (2) H12A—C12—H12C 109.5
C8—Te1—Cl1 90.85 (17) H12B—C12—H12C 109.5
C9—Te1—Cl1 86.78 (17) C13—O2—Te2 118.6 (3)
C9—Te1—O2 73.25 (17) C13—O2—Te1 127.2 (3)
Cl1—Te1—O2 121.01 (11) Te2—O2—Te1 114.1 (2)
C1—O1—Te1 116.6 (3) O2—C13—C14 110.4 (5)
C1—O1—Te2 124.9 (3) O2—C13—C15 109.4 (5)
Te1—O1—Te2 112.50 (18) C14—C13—C15 113.6 (6)
O2—Te2—C21 92.1 (2) O2—C13—H13 107.7
C20—Te2—C21 98.2 (2) C14—C13—H13 107.7
C20—Te2—Cl2 90.34 (16) C15—C13—H13 107.7
C21—Te2—Cl2 85.79 (19) C13—C14—H14A 109.5
O2—Te2—O1 66.36 (14) C13—C14—H14B 109.5
C21—Te2—O1 74.15 (17) H14A—C14—H14B 109.5
Cl2—Te2—O1 121.88 (10) C13—C14—H14C 109.5
O1—C1—C3 110.1 (5) H14A—C14—H14C 109.5
O1—C1—C2 106.5 (6) H14B—C14—H14C 109.5
C3—C1—C2 113.7 (5) C20—C15—C16 119.0 (5)
O1—C1—H1 108.8 C20—C15—C13 118.0 (5)
C3—C1—H1 108.8 C16—C15—C13 123.0 (6)
C2—C1—H1 108.8 C17—C16—C15 119.5 (7)
C1—C2—H2A 109.5 C17—C16—H16 120.3
C1—C2—H2B 109.5 C15—C16—H16 120.3
H2A—C2—H2B 109.5 C16—C17—C18 120.9 (7)
C1—C2—H2C 109.5 C16—C17—H17 119.5
H2A—C2—H2C 109.5 C18—C17—H17 119.5
H2B—C2—H2C 109.5 C19—C18—C17 120.5 (6)
C8—C3—C4 118.3 (5) C19—C18—H18 119.8
C8—C3—C1 118.5 (5) C17—C18—H18 119.8
C4—C3—C1 123.1 (6) C18—C19—C20 118.7 (6)
C5—C4—C3 120.8 (8) C18—C19—H19 120.6
C5—C4—H4 119.6 C20—C19—H19 120.6
C3—C4—H4 119.6 C15—C20—C19 121.3 (6)
C4—C5—C6 119.4 (7) C15—C20—Te2 112.3 (3)
C4—C5—H5 120.3 C19—C20—Te2 126.4 (5)
C6—C5—H5 120.3 C22—C21—Te2 116.1 (4)
C7—C6—C5 120.6 (6) C22—C21—H21A 108.3
C7—C6—H6 119.7 Te2—C21—H21A 108.3
C5—C6—H6 119.7 C22—C21—H21B 108.3
C6—C7—C8 119.2 (7) Te2—C21—H21B 108.3
C6—C7—H7 120.4 H21A—C21—H21B 107.4
C8—C7—H7 120.4 C21—C22—C23 112.5 (5)
C3—C8—C7 121.7 (6) C21—C22—H22A 109.1
C3—C8—Te1 111.7 (4) C23—C22—H22A 109.1
C7—C8—Te1 126.5 (5) C21—C22—H22B 109.1
C10—C9—Te1 116.6 (3) C23—C22—H22B 109.1
C10—C9—H9A 108.1 H22A—C22—H22B 107.8
Te1—C9—H9A 108.1 C24—C23—C22 113.5 (5)
C10—C9—H9B 108.1 C24—C23—H23A 108.9
Te1—C9—H9B 108.1 C22—C23—H23A 108.9
H9A—C9—H9B 107.3 C24—C23—H23B 108.9
C9—C10—C11 112.5 (4) C22—C23—H23B 108.9
C9—C10—H10A 109.1 H23A—C23—H23B 107.7
C11—C10—H10A 109.1 C23—C24—H24A 109.5
C9—C10—H10B 109.1 C23—C24—H24B 109.5
C11—C10—H10B 109.1 H24A—C24—H24B 109.5
H10A—C10—H10B 107.8 C23—C24—H24C 109.5
C12—C11—C10 113.8 (5) H24A—C24—H24C 109.5
C12—C11—H11A 108.8 H24B—C24—H24C 109.5
Te1—O1—C1—C3 18.3 (7) Te2—O2—C13—C14 137.8 (6)
Te2—O1—C1—C3 168.9 (3) Te1—O2—C13—C14 −39.0 (7)
Te1—O1—C1—C2 142.1 (4) Te2—O2—C13—C15 12.1 (7)
Te2—O1—C1—C2 −67.4 (6) Te1—O2—C13—C15 −164.8 (4)
O1—C1—C3—C8 −13.3 (8) O2—C13—C15—C20 −10.0 (8)
C2—C1—C3—C8 −132.8 (6) C14—C13—C15—C20 −133.9 (7)
O1—C1—C3—C4 169.8 (6) O2—C13—C15—C16 171.9 (6)
C2—C1—C3—C4 50.4 (9) C14—C13—C15—C16 48.1 (9)
C8—C3—C4—C5 −1.8 (10) C20—C15—C16—C17 1.2 (10)
C1—C3—C4—C5 175.1 (7) C13—C15—C16—C17 179.2 (7)
C3—C4—C5—C6 0.9 (12) C15—C16—C17—C18 −1.6 (11)
C4—C5—C6—C7 0.3 (12) C16—C17—C18—C19 0.4 (11)
C5—C6—C7—C8 −0.6 (10) C17—C18—C19—C20 1.1 (9)
C4—C3—C8—C7 1.5 (9) C16—C15—C20—C19 0.4 (9)
C1—C3—C8—C7 −175.5 (5) C13—C15—C20—C19 −177.7 (5)
C4—C3—C8—Te1 179.6 (5) C16—C15—C20—Te2 −178.1 (5)
C1—C3—C8—Te1 2.6 (6) C13—C15—C20—Te2 3.7 (7)
C6—C7—C8—C3 −0.3 (9) C18—C19—C20—C15 −1.6 (8)
C6—C7—C8—Te1 −178.1 (5) C18—C19—C20—Te2 176.8 (4)
Te1—C9—C10—C11 179.5 (5) Te2—C21—C22—C23 175.1 (5)
C9—C10—C11—C12 176.6 (8) C21—C22—C23—C24 −177.3 (7)

References

  1. Albeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704–1712.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Brodsky, M., Halpert, G., Albeck, M. & Sredni, B. J. (2010). J. Inflamm. 7, doi 10.1186/1476-9255-7-3. [DOI] [PMC free article] [PubMed]
  4. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  5. Caracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M. H. S., Lopes, J. G. S., Juliano, L., Santos, P. S., Comasseto, J. V., Cunha, R. L. O. R. & Tiekink, E. R. T. (2012). J. Mol. Struct. 1013, 11–18.
  6. Caracelli, I., Zukerman-Schpector, J., Madureira, L. S., Maganhi, S. H., Stefani, H. A., Guadagnin, R. C. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 321–328.
  7. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.
  8. Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755–760. [DOI] [PubMed]
  9. Engman, L. (1984). Organometallics, 3, 1308–1309.
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Fleming, A. (1932). J. Pathol. 35, 831–842.
  12. Friedman, M., Bayer, I., Letko, I., Duvdevani, R., Zavaro-Levy, O., Ron, B., Albeck, M. & Sredni, B. (2009). Br. J. Dermatol. 160, 403–408. [DOI] [PubMed]
  13. Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. [DOI] [PubMed]
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Halpert, G. & Sredni, B. (2014). Autoimmun. Rev. 13, 1230–1235. [DOI] [PubMed]
  16. Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425.
  17. Maksimenko, A. A., Sadekov, I. D., Kompan, O. E., Minkin, V. I. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd. 30, 367–369.
  18. Nogueira, C. W., Zeni, G. W. & Rocha, J. B. (2004). Chem. Rev. 104, 6255–6286. [DOI] [PubMed]
  19. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  20. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  21. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  22. Piovan, L. M. F. M., Alves, M. F. M., Juliano, L., Brömme, D., Cunha, R. L. O. R. & Andrade, L. H. (2011). Bioorg. Med. Chem. 19, 2009–2014. [DOI] [PubMed]
  23. Seng, H. L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655–662.
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Silberman, A., Kalechman, Y., Hirsch, S., Erlich, Z., Sredni, B. & Albeck, A. (2016). ChemBioChem, 17, 918–927. [DOI] [PubMed]
  26. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  27. Sredni, B. (2012). Semin. Cancer Biol. 22, 60–69. [DOI] [PubMed]
  28. Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390–6395. [DOI] [PubMed]
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017003887/hg5483sup1.cif

e-73-00564-sup1.cif (760.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003887/hg5483Isup2.hkl

e-73-00564-Isup2.hkl (407KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017003887/hg5483Isup3.cml

CCDC reference: 1537011

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES