Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 24;73(Pt 4):594–597. doi: 10.1107/S205698901700411X

Crystal structures of the Schiff base derivatives (E)-N′-[(1H-indol-3-yl)methyl­idene]isonicotino­hydrazide ethanol monosolvate and (E)-N-methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethyl­idene]hydrazinecarbo­thio­amide

Sivaraj Saranya a, Jebiti Haribabu b, Nattamai S P Bhuvanesh c, Ramasamy Karvembu b, Dasararaju Gayathri d,*
PMCID: PMC5382629  PMID: 28435728

In the two title Schiff base derivatives, the (E)-N′-[(1H-indol-3-yl)methyl­idene]isonicotinohydrazide mol­ecules and (E)-N-methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethyl­idene]hydrazinecarbo­thio­amide mol­ecules form a tape structure and a helical chain structure, respectively, through hydrogen bonds.

Keywords: crystal structure, Schiff base derivatives, isonicotinohydrazide, hydrazinecarbo­thio­amide

Abstract

The crystal structures of two title Schiff base derivatives, C15H12N4O·C2H6O (1·EtOH) and C13H13N3O2S (2), were determined at 110 and 100 K, respectively. In the crystal of compound 1·EtOH, the (E)-N′-[(1H-indol-3-yl)methyl­idene]isonicotinohydrazide and ethanol mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds, forming a tape structure running along the b-axis direction. The tapes are weakly linked via a C—H⋯N inter­action. In the crystal of compound 2, (E)-N-methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethyl­idene]hydrazinecarbo­thio­amide mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a helical chain along the b-axis direction. The chains are further linked into a layer expanding parallel to (102) through C—H⋯S inter­actions.

Chemical context  

Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu, Subhashree et al., 2015, 2016), anti-inflammatory (Alam et al., 2012), anti-cancer (Creaven et al., 2010; Haribabu, Jeyalakshmi et al., 2015, 2016), anti-bacterial (Sondhi et al., 2006), anti-fungal (Jarrahpour et al., 2007), anti-convulsant (Bhat & Al-Omar, 2011). Schiff bases have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules. They are widely used as catalysts, corrosion inhibitors and inter­mediates in organic synthesis, and also play a potential role in the development of coordination chemistry (Muralisankar et al., 2016). As part of our studies in this area, we have synthesized the title Schiff base compounds, 1·EtOH and 2, and determined their crystal structures.

Structural commentary  

The mol­ecular structures ((Figs. 1 and 2) of both 1 and 2 are non-planar, as evidenced by the torsion angles N3—C10—C11—C12 [42.5 (3)°] in 1 and C1—C2—C10—N1 [−152.0 (2)°] in 2. The mean plane of the central chain C9/N2/N3/C10/O1 in 1 makes dihedral angles of 6.91 (12) and 42.71 (13)°, respectively, with the C1–C8/N1 ring system and the pyridine C11–C15/N4 ring. In mol­ecule 2, the dihedral angle between the C1–C9/O1 ring system and the mean plane of the C10/N1/N2/C12/N3/C13 chain is 30.36 (9)°.graphic file with name e-73-00594-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound 1·EtOH, with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound 2, with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.

Supra­molecular features  

The crystal packing of 1·EtOH features O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds (Table 1), which link the mol­ecules into a tape structure running along the b-axis direction (Fig. 3). The tapes are weakly linked via a C—H⋯N inter­action (Table 1). In the N—H⋯O and N—H⋯N hydrogen bonds, atoms N1 and N3 act as donors to atoms O1 and N4, respectively, generating C(9) and C(7) chain motifs. The C—H⋯N inter­action generates a C(8) chain. Atom O1S of the ethanol mol­ecule acts as a donor in forming the O—H⋯O hydrogen bond with atom O1, which acts as a double acceptor.

Table 1. Hydrogen-bond geometry (Å, °) for 1·EtOH .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.05 2.871 (3) 156
N3—H3⋯N4ii 0.88 2.14 2.979 (3) 159
C5—H5⋯N2iii 0.95 2.62 3.236 (3) 123
O1S—H1S⋯O1 0.84 1.90 2.742 (3) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A packing diagram of compound 1·EtOH, viewed along the a axis, showing the O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯N inter­actions (dashed lines). For clarity, H atoms not involved in these inter­actions have been omitted.

In 2, the crystal packing features N—H⋯O, C—H⋯O and C—H⋯S inter­actions (Table 2). The mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a helical chain along the b-axis direction (Fig. 4). The chains are further linked via C—H⋯S inter­actions, forming a layer expanding parallel to (102). Atoms N2 and C11 act as donors to the double acceptor O2, generating C(7) and C(6) chains, respectively. As a result of these two hydrogen bonds, an Inline graphic(7) ring motif is generated. In the C—H⋯S inter­actions, atoms C7 and C11 act as donors to the double acceptor S1, generating C(11) and C(7) chains, respectively.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 2.39 3.269 (3) 175
C11—H11A⋯O2i 0.98 2.47 3.109 (3) 123
C7—H7⋯S1ii 0.95 2.85 3.711 (3) 151
C11—H11B⋯S1iii 0.98 2.87 3.728 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 4.

Figure 4

A crystal packing view of 2 along the a axis, showing the inter­molecular hydrogen-bonded network formed by N—H⋯O, C—H⋯O and C—H⋯S inter­actions (dashed lines). For clarity, H atoms not involved in these inter­actions have been omitted.

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) for the substructures 1 and 2 revealed several related Schiff base derivatives, including those with refcodes ADEKAW, ACIPIN, ADEZAL02 and APAQEP reported by Qiu et al. (2006), Lobana et al. (2012), Ilies et al. (2013) and Chainok et al. (2016), respectively.

Synthesis and crystallization  

Compound 1 was synthesized by condensing equimolar amounts of 1H-indole-3-carbaldehyde (145 mg, 1 mmol) with nicotinic acid hydrazide (137 mg, 1 mmol) in ethanol. The reaction mixture was then refluxed on a water bath for 5 h and poured into crushed ice. The corresponding solid Schiff base that formed was filtered, washed several times with distilled water and dried under vacuum. The compound was recrystallized from an ethanol–chloro­form (1:3) solvent mixture, yielding the ethanol solvate compound, 1·EtOH. Similarly, compound 2 was synthesized from equimolar amounts of 3-acetyl-2H-chromen-2-one (188 mg, 1 mmol) with N-methyl­hydrazine­carbo­thio­amide (105 mg, 1 mmol) in ethanol. Compound 2 was also recrystallized from an ethanol–chloro­form (1:3) solvent mixture.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were refined as riding with N—H = 0.88, C—H = 0.95 or 0.98 Å and U iso(H) = 1.2 or 1.5U eq(parent atom). For 1·EtOH, the methyl­ene H atoms of the ethanol solvent mol­ecule were refined independently under strong bond-length and angle restraints using DFIX to avoid a large residual electron-density peak near the methyl­ene C atom caused by the usual riding treatment of the H atoms. In 2, TWINABS was employed to correct the data for absorption effects, as well as to separate hkl files for the domains with major and minor components; the twin ratio was observed to be 91:9. In the refinement, only the data of the major domain were used.

Table 3. Experimental details.

  1·EtOH 2
Crystal data
Chemical formula C15H12N4O·C2H6O C13H13N3O2S
M r 310.35 275.32
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/c
Temperature (K) 110 100
a, b, c (Å) 9.4692 (18), 9.9821 (19), 16.682 (3) 9.289 (4), 9.616 (4), 14.474 (6)
α, β, γ (°) 90, 90, 90 90, 90.825 (4), 90
V3) 1576.9 (5) 1292.8 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.25
Crystal size (mm) 0.50 × 0.37 × 0.13 0.49 × 0.46 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (TWINABS; Bruker, 2012)
T min, T max 0.618, 0.681 0.534, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39878, 3616, 3527 5480, 2902, 2285
R int 0.054 0.044
(sin θ/λ)max−1) 0.651 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.119, 0.98 0.048, 0.116, 1.10
No. of reflections 3616 2902
No. of parameters 216 174
No. of restraints 3 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.36 0.30, −0.35
Absolute structure Flack x determined using 1491 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.2 (3)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2014 and SHELXS2013 (Sheldrick, 2008), SHELXL2013 and SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2015).

Supplementary Material

Crystal structure: contains datablock(s) Global, 2, 1.EtOH. DOI: 10.1107/S205698901700411X/is5471sup1.cif

e-73-00594-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 1.EtOH. DOI: 10.1107/S205698901700411X/is54711.EtOHsup4.hkl

e-73-00594-1.EtOHsup4.hkl (288.6KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901700411X/is54712sup5.hkl

e-73-00594-2sup5.hkl (232.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901700411X/is54711.EtOHsup4.cml

Supporting information file. DOI: 10.1107/S205698901700411X/is54712sup5.cml

CCDC references: 1537754, 1537753

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GD thanks the UGC–SAP and DST–FIST for funding to Centre of Advanced Study in Crystallography and Biophysics, University of Madras.

supplementary crystallographic information

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Crystal data

C15H12N4O·C2H6O Dx = 1.307 Mg m3
Mr = 310.35 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9846 reflections
a = 9.4692 (18) Å θ = 2.4–27.5°
b = 9.9821 (19) Å µ = 0.09 mm1
c = 16.682 (3) Å T = 110 K
V = 1576.9 (5) Å3 Block, colorless
Z = 4 0.50 × 0.37 × 0.13 mm
F(000) = 656

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Data collection

Bruker APEXII CCD diffractometer 3527 reflections with I > 2σ(I)
φ and ω scans Rint = 0.054
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 27.6°, θmin = 2.4°
Tmin = 0.618, Tmax = 0.681 h = −12→12
39878 measured reflections k = −12→12
3616 independent reflections l = −21→21

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.077P)2 + 0.9574P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119 (Δ/σ)max = 0.004
S = 0.98 Δρmax = 1.50 e Å3
3616 reflections Δρmin = −0.36 e Å3
216 parameters Absolute structure: Flack x determined using 1491 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: −0.2 (3)

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Special details

Experimental. SADABS-2014/3 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1205 before and 0.0824 after correction. The Ratio of minimum to maximum transmission is 0.9082. The λ/2 correction factor is not present.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso; at 1.2 times of: all C(H) groups, all N(H) groups and at 1.5 times of: C2S(H2SA, H2SB, H2SC) and O(H) groups 2. a. Aromatic/amide H refined with riding coordinates: N1(H1), N3(H3), C3(H3A), C4(H4), C5(H5), C6(H6), C7(H7), C9(H9), C12(H12), C13(H13), C14(H14), C15(H15) b. Idealised Me refined as rotating group: C11(H11A, H11B, H11C) 3. Strong restraints with DFIX were employed for methylene hydrogen atoms of the ethanol solvent molecule.

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.41425 (19) 0.67417 (16) 0.63518 (11) 0.0184 (4)
N1 0.4971 (2) −0.05011 (19) 0.64904 (12) 0.0157 (4)
H1 0.492857 −0.137698 0.654508 0.019*
N2 0.3980 (2) 0.40446 (18) 0.66721 (11) 0.0140 (4)
N3 0.2999 (2) 0.49844 (19) 0.69437 (12) 0.0137 (4)
H3 0.228694 0.472947 0.724635 0.016*
N4 −0.0322 (2) 0.8812 (2) 0.74337 (13) 0.0195 (4)
C1 0.5943 (2) 0.0185 (2) 0.60295 (13) 0.0143 (4)
C2 0.5644 (2) 0.1570 (2) 0.60882 (13) 0.0135 (4)
C3 0.6449 (3) 0.2483 (2) 0.56436 (14) 0.0166 (5)
H3A 0.625228 0.341561 0.566138 0.020*
C4 0.7543 (3) 0.1987 (3) 0.51768 (15) 0.0201 (5)
H4 0.809673 0.259218 0.486964 0.024*
C5 0.7852 (3) 0.0605 (3) 0.51472 (15) 0.0204 (5)
H5 0.862792 0.030250 0.483480 0.024*
C6 0.7048 (3) −0.0316 (2) 0.55637 (14) 0.0185 (5)
H6 0.723861 −0.124959 0.553456 0.022*
C7 0.4091 (2) 0.0393 (2) 0.68452 (14) 0.0156 (4)
H7 0.333452 0.016491 0.719368 0.019*
C8 0.4453 (2) 0.1688 (2) 0.66264 (13) 0.0140 (4)
C9 0.3669 (2) 0.2839 (2) 0.68918 (13) 0.0142 (4)
H9 0.289165 0.270747 0.724287 0.017*
C10 0.3146 (2) 0.6275 (2) 0.67420 (13) 0.0133 (4)
C11 0.1947 (2) 0.7155 (2) 0.70049 (14) 0.0139 (4)
C12 0.1325 (2) 0.7050 (2) 0.77589 (14) 0.0156 (4)
H12 0.165590 0.641316 0.813786 0.019*
C13 0.0204 (2) 0.7902 (2) 0.79444 (14) 0.0185 (5)
H13 −0.021080 0.783377 0.846143 0.022*
C14 0.0301 (3) 0.8902 (2) 0.67103 (15) 0.0196 (5)
H14 −0.005725 0.954149 0.634104 0.023*
C15 0.1435 (2) 0.8117 (2) 0.64711 (15) 0.0168 (5)
H15 0.185233 0.823122 0.595771 0.020*
O1S 0.6541 (2) 0.6025 (2) 0.55370 (12) 0.0279 (4)
H1S 0.582293 0.623623 0.580387 0.042*
C1S 0.7704 (3) 0.5902 (2) 0.60520 (14) 0.0246 (5)
H1SA 0.757 (3) 0.4957 (4) 0.6166 (9) 0.037*
H1SB 0.776 (4) 0.6301 (9) 0.6581 (2) 0.037*
C2S 0.9016 (3) 0.5715 (3) 0.5560 (2) 0.0314 (6)
H2SA 0.889630 0.494186 0.520487 0.047*
H2SB 0.982242 0.556124 0.591660 0.047*
H2SC 0.918511 0.652049 0.523841 0.047*

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0179 (8) 0.0109 (7) 0.0262 (8) −0.0002 (6) 0.0061 (7) −0.0001 (6)
N1 0.0189 (9) 0.0099 (8) 0.0183 (9) −0.0004 (7) 0.0013 (7) 0.0009 (7)
N2 0.0137 (8) 0.0113 (8) 0.0169 (9) 0.0022 (7) 0.0002 (7) −0.0012 (7)
N3 0.0120 (8) 0.0116 (8) 0.0177 (9) 0.0004 (7) 0.0025 (7) −0.0003 (7)
N4 0.0150 (9) 0.0153 (9) 0.0282 (10) 0.0019 (8) 0.0009 (8) −0.0020 (8)
C1 0.0156 (10) 0.0125 (10) 0.0147 (9) −0.0009 (8) −0.0034 (8) 0.0008 (8)
C2 0.0138 (10) 0.0122 (10) 0.0143 (9) 0.0011 (7) −0.0018 (8) −0.0001 (8)
C3 0.0182 (11) 0.0137 (10) 0.0178 (10) −0.0015 (8) 0.0003 (9) −0.0003 (8)
C4 0.0207 (11) 0.0219 (12) 0.0177 (10) −0.0021 (10) 0.0046 (9) 0.0005 (9)
C5 0.0181 (11) 0.0250 (13) 0.0180 (10) 0.0025 (9) 0.0018 (9) −0.0022 (9)
C6 0.0213 (11) 0.0158 (10) 0.0184 (11) 0.0043 (9) −0.0012 (9) −0.0016 (9)
C7 0.0168 (10) 0.0130 (10) 0.0171 (10) 0.0004 (8) −0.0004 (8) 0.0005 (8)
C8 0.0139 (10) 0.0129 (10) 0.0153 (9) −0.0004 (8) −0.0011 (8) 0.0005 (8)
C9 0.0133 (9) 0.0135 (10) 0.0157 (10) 0.0000 (8) 0.0002 (8) 0.0003 (8)
C10 0.0138 (10) 0.0118 (9) 0.0143 (10) 0.0014 (8) −0.0011 (8) −0.0020 (8)
C11 0.0126 (9) 0.0110 (9) 0.0181 (10) −0.0012 (8) −0.0006 (8) −0.0029 (8)
C12 0.0151 (10) 0.0134 (10) 0.0183 (10) 0.0001 (8) −0.0004 (8) −0.0007 (8)
C13 0.0165 (10) 0.0186 (10) 0.0204 (11) −0.0007 (9) 0.0032 (9) −0.0021 (9)
C14 0.0180 (10) 0.0144 (10) 0.0263 (11) 0.0018 (9) −0.0003 (9) 0.0028 (9)
C15 0.0162 (10) 0.0132 (10) 0.0212 (11) −0.0007 (8) 0.0006 (9) 0.0011 (8)
O1S 0.0224 (9) 0.0324 (10) 0.0288 (10) 0.0047 (8) 0.0065 (7) −0.0004 (8)
C1S 0.0269 (13) 0.0223 (12) 0.0246 (12) −0.0020 (10) 0.0061 (10) −0.0072 (10)
C2S 0.0208 (12) 0.0312 (14) 0.0423 (16) −0.0029 (11) 0.0077 (12) −0.0042 (12)

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Geometric parameters (Å, º)

O1—C10 1.238 (3) C7—C8 1.386 (3)
N1—C7 1.357 (3) C7—H7 0.9500
N1—C1 1.381 (3) C8—C9 1.437 (3)
N1—H1 0.8800 C9—H9 0.9500
N2—C9 1.292 (3) C10—C11 1.501 (3)
N2—N3 1.396 (3) C11—C12 1.393 (3)
N3—C10 1.339 (3) C11—C15 1.396 (3)
N3—H3 0.8800 C12—C13 1.395 (3)
N4—C13 1.341 (3) C12—H12 0.9500
N4—C14 1.346 (3) C13—H13 0.9500
C1—C6 1.397 (3) C14—C15 1.388 (3)
C1—C2 1.414 (3) C14—H14 0.9500
C2—C3 1.401 (3) C15—H15 0.9500
C2—C8 1.446 (3) O1S—C1S 1.402 (3)
C3—C4 1.387 (3) O1S—H1S 0.8400
C3—H3A 0.9500 C1S—C2S 1.500 (4)
C4—C5 1.411 (4) C1S—H1SA 0.9700 (2)
C4—H4 0.9500 C1S—H1SB 0.9700 (2)
C5—C6 1.381 (3) C2S—H2SA 0.9800
C5—H5 0.9500 C2S—H2SB 0.9800
C6—H6 0.9500 C2S—H2SC 0.9800
C7—N1—C1 109.00 (18) N2—C9—H9 118.7
C7—N1—H1 125.5 C8—C9—H9 118.7
C1—N1—H1 125.5 O1—C10—N3 125.0 (2)
C9—N2—N3 112.49 (18) O1—C10—C11 120.7 (2)
C10—N3—N2 119.74 (19) N3—C10—C11 114.30 (19)
C10—N3—H3 120.1 C12—C11—C15 118.7 (2)
N2—N3—H3 120.1 C12—C11—C10 122.7 (2)
C13—N4—C14 116.9 (2) C15—C11—C10 118.6 (2)
N1—C1—C6 129.1 (2) C11—C12—C13 118.5 (2)
N1—C1—C2 108.2 (2) C11—C12—H12 120.8
C6—C1—C2 122.6 (2) C13—C12—H12 120.8
C3—C2—C1 119.3 (2) N4—C13—C12 123.6 (2)
C3—C2—C8 134.4 (2) N4—C13—H13 118.2
C1—C2—C8 106.20 (19) C12—C13—H13 118.2
C4—C3—C2 118.1 (2) N4—C14—C15 124.0 (2)
C4—C3—H3A 120.9 N4—C14—H14 118.0
C2—C3—H3A 120.9 C15—C14—H14 118.0
C3—C4—C5 121.6 (2) C14—C15—C11 118.3 (2)
C3—C4—H4 119.2 C14—C15—H15 120.9
C5—C4—H4 119.2 C11—C15—H15 120.9
C6—C5—C4 121.3 (2) C1S—O1S—H1S 109.5
C6—C5—H5 119.4 O1S—C1S—C2S 109.0 (2)
C4—C5—H5 119.4 O1S—C1S—H1SA 96.0 (14)
C5—C6—C1 117.0 (2) C2S—C1S—H1SA 95.2 (13)
C5—C6—H6 121.5 O1S—C1S—H1SB 124.6 (19)
C1—C6—H6 121.5 C2S—C1S—H1SB 120 (2)
N1—C7—C8 110.3 (2) H1SA—C1S—H1SB 103.2 (9)
N1—C7—H7 124.9 C1S—C2S—H2SA 109.5
C8—C7—H7 124.9 C1S—C2S—H2SB 109.5
C7—C8—C9 122.4 (2) H2SA—C2S—H2SB 109.5
C7—C8—C2 106.3 (2) C1S—C2S—H2SC 109.5
C9—C8—C2 131.2 (2) H2SA—C2S—H2SC 109.5
N2—C9—C8 122.6 (2) H2SB—C2S—H2SC 109.5
C9—N2—N3—C10 −177.7 (2) C3—C2—C8—C9 0.1 (4)
C7—N1—C1—C6 179.6 (2) C1—C2—C8—C9 −178.0 (2)
C7—N1—C1—C2 −1.0 (3) N3—N2—C9—C8 174.45 (19)
N1—C1—C2—C3 −177.2 (2) C7—C8—C9—N2 −178.1 (2)
C6—C1—C2—C3 2.2 (3) C2—C8—C9—N2 −1.6 (4)
N1—C1—C2—C8 1.3 (2) N2—N3—C10—O1 −3.5 (3)
C6—C1—C2—C8 −179.3 (2) N2—N3—C10—C11 174.32 (18)
C1—C2—C3—C4 −1.8 (3) O1—C10—C11—C12 −139.5 (2)
C8—C2—C3—C4 −179.8 (2) N3—C10—C11—C12 42.5 (3)
C2—C3—C4—C5 −0.3 (4) O1—C10—C11—C15 40.6 (3)
C3—C4—C5—C6 2.0 (4) N3—C10—C11—C15 −137.4 (2)
C4—C5—C6—C1 −1.6 (4) C15—C11—C12—C13 0.7 (3)
N1—C1—C6—C5 178.8 (2) C10—C11—C12—C13 −179.2 (2)
C2—C1—C6—C5 −0.5 (3) C14—N4—C13—C12 −1.1 (3)
C1—N1—C7—C8 0.2 (3) C11—C12—C13—N4 0.7 (4)
N1—C7—C8—C9 177.8 (2) C13—N4—C14—C15 0.0 (4)
N1—C7—C8—C2 0.6 (3) N4—C14—C15—C11 1.4 (4)
C3—C2—C8—C7 177.1 (2) C12—C11—C15—C14 −1.7 (3)
C1—C2—C8—C7 −1.1 (2) C10—C11—C15—C14 178.2 (2)

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.05 2.871 (3) 156
N3—H3···N4ii 0.88 2.14 2.979 (3) 159
C5—H5···N2iii 0.95 2.62 3.236 (3) 123
O1S—H1S···O1 0.84 1.90 2.742 (3) 177

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, −z+1.

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Crystal data

C13H13N3O2S F(000) = 576
Mr = 275.32 Dx = 1.415 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.289 (4) Å Cell parameters from 4293 reflections
b = 9.616 (4) Å θ = 2.2–27.3°
c = 14.474 (6) Å µ = 0.25 mm1
β = 90.825 (4)° T = 100 K
V = 1292.8 (9) Å3 Block, yellow
Z = 4 0.49 × 0.46 × 0.31 mm

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Data collection

Bruker APEXII CCD diffractometer 2285 reflections with I > 2σ(I)
φ and ω scans Rint = 0.044
Absorption correction: multi-scan (TWINABS; Bruker, 2012) θmax = 27.6°, θmin = 2.2°
Tmin = 0.534, Tmax = 0.746 h = −12→12
5480 measured reflections k = −12→12
2902 independent reflections l = 0→18

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.711P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
2902 reflections Δρmax = 0.30 e Å3
174 parameters Δρmin = −0.35 e Å3

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Special details

Experimental. For component 1: wR2(int) was 0.1337 before and 0.0605 after correction. The ratio of minimum to maximum transmission is 0.72. The λ/2 correction factor is not presentFinal HKLF 4 output contains 20988 reflections, Rint = 0.0871 (9738 with I > 3sig(I), Rint = 0.0747)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The absorption correction program TWINABS2 was employed to correct the data for absorption effects, as well as to separate hkl files for the domains with major component, which was used for further analysis.1. Fixed Uiso; at 1.2 times of: All C(H) groups, all N(H) groups at 1.5 times of: all C(H, H, H) groups 2. a. Aromatic/amide H refined with riding coordinates: N2(H2), N3(H3), C3(H3A), C6(H6), C7(H7), C8(H8), C9(H9) b. Idealised Me refined as rotating group: C11(H11A, H11B, H11C), C13(H13A, H13B, H13C)

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.80937 (6) 1.04558 (5) 0.39682 (4) 0.02114 (16)
O1 0.21617 (15) 0.36330 (14) 0.44249 (10) 0.0215 (3)
O2 0.37162 (18) 0.38370 (16) 0.33164 (11) 0.0314 (4)
N1 0.52878 (17) 0.75100 (17) 0.43518 (11) 0.0160 (4)
N2 0.61381 (18) 0.84670 (17) 0.39257 (11) 0.0173 (4)
H2 0.6171 0.8510 0.3319 0.021*
N3 0.67181 (19) 0.92800 (18) 0.53607 (11) 0.0197 (4)
H3 0.6007 0.8755 0.5554 0.024*
C1 0.3192 (2) 0.4382 (2) 0.39822 (14) 0.0200 (4)
C2 0.3575 (2) 0.5745 (2) 0.43650 (13) 0.0158 (4)
C3 0.3017 (2) 0.6138 (2) 0.51797 (13) 0.0164 (4)
H3A 0.3296 0.7005 0.5441 0.020*
C4 0.2019 (2) 0.5287 (2) 0.56577 (13) 0.0182 (4)
C5 0.1581 (2) 0.4043 (2) 0.52496 (14) 0.0193 (4)
C6 0.1375 (2) 0.5677 (2) 0.64904 (14) 0.0256 (5)
H6 0.1641 0.6528 0.6780 0.031*
C7 0.0363 (2) 0.4834 (3) 0.68876 (15) 0.0311 (6)
H7 −0.0071 0.5099 0.7452 0.037*
C8 −0.0026 (2) 0.3591 (3) 0.64601 (16) 0.0310 (6)
H8 −0.0720 0.3010 0.6743 0.037*
C9 0.0567 (2) 0.3179 (2) 0.56388 (15) 0.0256 (5)
H9 0.0289 0.2332 0.5349 0.031*
C10 0.4546 (2) 0.6670 (2) 0.38477 (13) 0.0164 (4)
C11 0.4552 (3) 0.6675 (3) 0.28152 (14) 0.0309 (6)
H11A 0.4431 0.7630 0.2590 0.046*
H11B 0.3760 0.6097 0.2579 0.046*
H11C 0.5470 0.6302 0.2599 0.046*
C12 0.6937 (2) 0.9357 (2) 0.44612 (13) 0.0159 (4)
C13 0.7581 (2) 1.0010 (2) 0.60437 (14) 0.0273 (5)
H13A 0.8603 0.9825 0.5938 0.041*
H13B 0.7326 0.9689 0.6663 0.041*
H13C 0.7399 1.1011 0.5994 0.041*

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0185 (3) 0.0218 (3) 0.0231 (3) −0.0043 (2) 0.0011 (2) 0.0012 (2)
O1 0.0192 (8) 0.0158 (7) 0.0295 (8) −0.0012 (6) −0.0026 (6) −0.0015 (6)
O2 0.0320 (9) 0.0280 (9) 0.0343 (9) −0.0001 (7) 0.0055 (7) −0.0140 (7)
N1 0.0141 (8) 0.0183 (9) 0.0155 (8) 0.0000 (7) −0.0004 (6) 0.0013 (6)
N2 0.0162 (8) 0.0225 (9) 0.0130 (8) −0.0038 (7) −0.0018 (6) 0.0010 (7)
N3 0.0206 (9) 0.0219 (9) 0.0164 (9) −0.0043 (7) −0.0021 (7) −0.0015 (7)
C1 0.0168 (10) 0.0206 (11) 0.0226 (11) 0.0015 (9) −0.0033 (8) −0.0010 (9)
C2 0.0133 (9) 0.0178 (10) 0.0161 (10) 0.0009 (8) −0.0036 (7) −0.0009 (8)
C3 0.0138 (10) 0.0181 (10) 0.0173 (10) 0.0009 (8) −0.0036 (7) 0.0001 (8)
C4 0.0138 (10) 0.0235 (11) 0.0171 (10) 0.0018 (8) −0.0053 (7) 0.0054 (8)
C5 0.0140 (10) 0.0200 (10) 0.0237 (11) 0.0045 (8) −0.0051 (8) 0.0066 (8)
C6 0.0212 (11) 0.0361 (13) 0.0195 (11) −0.0010 (10) −0.0027 (8) 0.0017 (9)
C7 0.0218 (12) 0.0522 (16) 0.0193 (11) −0.0009 (11) −0.0017 (9) 0.0119 (10)
C8 0.0171 (11) 0.0420 (14) 0.0339 (13) −0.0039 (10) −0.0045 (9) 0.0221 (11)
C9 0.0172 (11) 0.0237 (11) 0.0356 (13) −0.0026 (9) −0.0070 (9) 0.0114 (9)
C10 0.0149 (10) 0.0193 (10) 0.0151 (10) 0.0015 (8) −0.0009 (7) −0.0019 (8)
C11 0.0347 (14) 0.0419 (14) 0.0162 (11) −0.0165 (11) 0.0014 (9) −0.0042 (10)
C12 0.0131 (9) 0.0162 (10) 0.0184 (10) 0.0035 (8) −0.0027 (7) 0.0008 (8)
C13 0.0269 (12) 0.0347 (13) 0.0202 (11) −0.0033 (11) −0.0069 (9) −0.0041 (9)

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Geometric parameters (Å, º)

S1—C12 1.674 (2) C4—C6 1.404 (3)
O1—C1 1.365 (2) C5—C9 1.382 (3)
O1—C5 1.375 (3) C6—C7 1.374 (3)
O2—C1 1.206 (2) C6—H6 0.9500
N1—C10 1.282 (3) C7—C8 1.392 (4)
N1—N2 1.366 (2) C7—H7 0.9500
N2—C12 1.367 (3) C8—C9 1.375 (3)
N2—H2 0.8800 C8—H8 0.9500
N3—C12 1.323 (3) C9—H9 0.9500
N3—C13 1.446 (3) C10—C11 1.494 (3)
N3—H3 0.8800 C11—H11A 0.9800
C1—C2 1.464 (3) C11—H11B 0.9800
C2—C3 1.349 (3) C11—H11C 0.9800
C2—C10 1.479 (3) C13—H13A 0.9800
C3—C4 1.423 (3) C13—H13B 0.9800
C3—H3A 0.9500 C13—H13C 0.9800
C4—C5 1.392 (3)
C1—O1—C5 122.86 (16) C6—C7—H7 120.1
C10—N1—N2 118.48 (16) C8—C7—H7 120.1
N1—N2—C12 118.61 (16) C9—C8—C7 121.8 (2)
N1—N2—H2 120.7 C9—C8—H8 119.1
C12—N2—H2 120.7 C7—C8—H8 119.1
C12—N3—C13 123.65 (18) C8—C9—C5 117.6 (2)
C12—N3—H3 118.2 C8—C9—H9 121.2
C13—N3—H3 118.2 C5—C9—H9 121.2
O2—C1—O1 116.07 (18) N1—C10—C2 114.68 (17)
O2—C1—C2 126.37 (19) N1—C10—C11 123.86 (18)
O1—C1—C2 117.55 (17) C2—C10—C11 121.29 (17)
C3—C2—C1 119.16 (18) C10—C11—H11A 109.5
C3—C2—C10 121.28 (18) C10—C11—H11B 109.5
C1—C2—C10 119.56 (17) H11A—C11—H11B 109.5
C2—C3—C4 121.67 (18) C10—C11—H11C 109.5
C2—C3—H3A 119.2 H11A—C11—H11C 109.5
C4—C3—H3A 119.2 H11B—C11—H11C 109.5
C5—C4—C6 117.92 (19) N3—C12—N2 115.66 (17)
C5—C4—C3 118.43 (18) N3—C12—S1 124.32 (15)
C6—C4—C3 123.51 (19) N2—C12—S1 120.02 (15)
O1—C5—C9 117.38 (19) N3—C13—H13A 109.5
O1—C5—C4 119.94 (18) N3—C13—H13B 109.5
C9—C5—C4 122.7 (2) H13A—C13—H13B 109.5
C7—C6—C4 120.3 (2) N3—C13—H13C 109.5
C7—C6—H6 119.9 H13A—C13—H13C 109.5
C4—C6—H6 119.9 H13B—C13—H13C 109.5
C6—C7—C8 119.7 (2)
C10—N1—N2—C12 −179.56 (18) C5—C4—C6—C7 1.0 (3)
C5—O1—C1—O2 172.55 (18) C3—C4—C6—C7 176.49 (19)
C5—O1—C1—C2 −6.3 (3) C4—C6—C7—C8 −0.1 (3)
O2—C1—C2—C3 −171.9 (2) C6—C7—C8—C9 −0.7 (3)
O1—C1—C2—C3 6.9 (3) C7—C8—C9—C5 0.5 (3)
O2—C1—C2—C10 8.9 (3) O1—C5—C9—C8 −179.46 (18)
O1—C1—C2—C10 −172.34 (17) C4—C5—C9—C8 0.4 (3)
C1—C2—C3—C4 −2.7 (3) N2—N1—C10—C2 −175.51 (16)
C10—C2—C3—C4 176.51 (17) N2—N1—C10—C11 −0.1 (3)
C2—C3—C4—C5 −2.2 (3) C3—C2—C10—N1 28.8 (3)
C2—C3—C4—C6 −177.73 (19) C1—C2—C10—N1 −152.03 (18)
C1—O1—C5—C9 −178.67 (18) C3—C2—C10—C11 −146.7 (2)
C1—O1—C5—C4 1.5 (3) C1—C2—C10—C11 32.4 (3)
C6—C4—C5—O1 178.71 (18) C13—N3—C12—N2 172.14 (19)
C3—C4—C5—O1 3.0 (3) C13—N3—C12—S1 −8.2 (3)
C6—C4—C5—C9 −1.1 (3) N1—N2—C12—N3 −5.4 (3)
C3—C4—C5—C9 −176.87 (18) N1—N2—C12—S1 174.97 (13)

(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.88 2.39 3.269 (3) 175
C11—H11A···O2i 0.98 2.47 3.109 (3) 123
C7—H7···S1ii 0.95 2.85 3.711 (3) 151
C11—H11B···S1iii 0.98 2.87 3.728 (3) 146

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2.

References

  1. Alam, M. S., Choi, J. & Lee, D. (2012). Bioorg. Med. Chem. 20, 4103–4108. [DOI] [PubMed]
  2. Bhat, M. A. & Al-Omar, M. A. (2011). Acta Pol. Pharm. 68, 375–380. [PubMed]
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chainok, K., Makmuang, S. & Kielar, F. (2016). Acta Cryst. E72, 980–983. [DOI] [PMC free article] [PubMed]
  6. Creaven, B. S., Duff, B., Egan, D. A., Kavanagh, K., Rosair, G., Thangella, V. R. & Walsh, M. (2010). Inorg. Chim. Acta, 363, 4048–4058.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Haribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2015). RSC Adv. 5, 46031–46049.
  9. Haribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2016). J. Biol. Inorg. Chem. doi: 10.1007/s00775-016-1424-1. [DOI] [PubMed]
  10. Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.
  11. Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195.
  12. Ilies, D.-C., Pahontu, E., Shova, S., Gulea, A. & Rosu, T. (2013). Polyhedron, 51, 307–315.
  13. Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730. [DOI] [PMC free article] [PubMed]
  14. Lobana, T. S., Sharma, R., Hundal, G., Castineiras, A. & Butcher, R. J. (2012). Polyhedron, 47, 134–142.
  15. Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765. [DOI] [PubMed]
  21. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, 2, 1.EtOH. DOI: 10.1107/S205698901700411X/is5471sup1.cif

e-73-00594-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 1.EtOH. DOI: 10.1107/S205698901700411X/is54711.EtOHsup4.hkl

e-73-00594-1.EtOHsup4.hkl (288.6KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901700411X/is54712sup5.hkl

e-73-00594-2sup5.hkl (232.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901700411X/is54711.EtOHsup4.cml

Supporting information file. DOI: 10.1107/S205698901700411X/is54712sup5.cml

CCDC references: 1537754, 1537753

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES