Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 31;73(Pt 4):610–615. doi: 10.1107/S2056989017004662

Crystal structures of three 4-substituted-2,2′-bipyridines synthesized by Sonogashira and Suzuki–Miyaura cross-coupling reactions

Thuy Luong Thi Thu a, Ngan Nguyen Bich a, Hien Nguyen a, Luc Van Meervelt b,*
PMCID: PMC5382633  PMID: 28435732

In the crystal structures of three 4-substituted-2,2′-bi­pyridines prepared using facile synthetic procedures, two novel 4-alkynyl-2,2-bi­pyridines via the Sonogashira cross-coupling reaction and one 4-aryl-2,2′-bi­pyridine via the Suzuki–Miyaura cross-coupling reaction, the planar 4-alkynyl-substituted derivatives are in contrast to the non-planar 4-aryl derivative.

Keywords: crystal structure; dye-sensitized solar cells; 2,2′-bi­pyridine; palladium-catalyzed; Sonogashira cross-coupling; Suzuki–Miyaura cross-coupling

Abstract

Facile synthetic routes for three 4-substituted 2,2′-bi­pyridine derivatives, 4-[2-(4-methyl­phenyl)­ethyn­yl]-2,2′-bi­pyridine, C19H14N2, (I), 4-[2-(pyridin-3-yl)ethyn­yl]-2,2′-bi­pyridine, C17H11N3, (II), and 4-(indol-4-yl)-2,2′-bi­pyridine, C18H13N3, (III), via Sonogashira and Suzuki–Miyaura cross-coupling reactions, respect­ively, are described. As indicated by X-ray analysis, the 2,2′-bi­pyridine core, the ethyl­ene linkage and the substituents of (I) and (II) are almost planar [dihedral angles between the two ring systems: 8.98 (5) and 9.90 (6)° for the two mol­ecules of (I) in the asymmetric unit and 2.66 (14)° for (II)], allowing π-conjugation. On the contrary, in (III), the indole substituent ring is rotated significantly out of the bi­pyridine plane [dihedral angle = 55.82 (3)°], due to steric hindrance. The crystal packings of (I) and (II) are dominated by π–π inter­actions, resulting in layers of mol­ecules parallel to (30-2) in (I) and columns of mol­ecules along the a axis in (II). The packing of (III) exhibits zigzag chains of mol­ecules along the c axis inter­acting through N—H⋯N hydrogen bonds and π–π inter­actions. The contributions of unknown disordered solvent mol­ecules to the diffraction intensities in (II) were removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] algorithm of PLATON. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

Chemical context  

The bidentate ligand 2,2′-bi­pyridine (Bpy) is one of the most studied chelate systems and has found applications in various fields, including catalysis (Kitanosono et al., 2015; Song et al., 2015), chemosensors for metal ions (Al Abdel Hamid et al., 2011), electroluminescent devices (Li et al., 2000), and mol­ecular shuttles (Lewis et al., 2016). In particular, as a result of their unique photophysical characteristics, 2,2′-bi­pyridine derivatives are used in the synthesis of photosensitizers (Grätzel, 2003, Grätzel, 2009; Chen et al., 2012; Nguyen et al., 2015). In order to fine tune its properties, great efforts have been made to develop new synthetic methods for function­alization of this bidentate ligand by introducing various substituents (Kaes et al., 2000; Newkome et al., 2004; Ortiz et al., 2013; Norris et al., 2013).

In this paper, we report on the synthesis of three 4-substituted 2,2′-bi­pyridine derivatives, namely 4-(4-methyl­phenyl­ethyn­yl)-2,2′-bi­pyridine, C19H14N2, (I), 4-(pyridin-3-ylethyn­yl)-2,2′-bi­pyridine, C17H11N3, (II) and 4-(indol-4-yl)-2,2′-bi­pyridine, C18H13N3, (III), obtained from the Sonogashira (Sonogashira et al., 1975; Sonogashira, 2002; Negishi & de Meijere, 2002) and Suzuki–Miyaura (Miyaura & Suzuki, 1979; Suzuki, 1999; Kumar et al., 2014; Blangetti et al., 2013) cross-coupling reactions of 4-bromo-2,2′-bi­pyridine. The ethynyl bridge in (I) and (II) was introduced to decrease the steric hindrance between the pyridine ring and the aromatic substituent and at the same time to extend the π-conjugation. The crystal structures as well as geometry and the mol­ecular arrangement in the crystals of (I), (II) and (III) are reported herein.graphic file with name e-73-00610-scheme1.jpg

Structural commentary  

The structures of the three 4-substituted 2,2′-bi­pyridines (I), (II), and (III) were elucidated by 1H and 13C NMR spectros­copy using d1-chloro­form as solvent (see Synthesis and crystallization). The 1H NMR spectra of the three compounds show typical proton resonances and splitting patterns of the Bpy core. The proton resonances of the introduced alkyne or the heteroarene moiety are easily recognized. In the 13C NMR spectrum of (I) and (II), the two resonance signals at about 94.3 and 86.5 p.p.m. prove the 2,2′-bi­pyridine and the tolyl or pyridine substituent to be connected by a C≡C linker. These signals typical for Csp carbons are not observed in the 13C NMR spectrum of (III) as the heterocycle is directly attached to the 2,2′-bi­pyridine core.

The mol­ecular conformations of the compounds (I), (II) and (III) determined in the X-ray structural analysis are shown in Fig. 1. The asymmetric unit of (I) (Fig. 1 a) consists of two mol­ecules with similar conformational features (r.m.s deviation = 0.120 Å) and are linked by a C—H⋯N hydrogen bond (Table 1). As expected, the aromatic substituents introduced via an ethyl­ene bridge in (I) (Fig. 1 a) and (II) (Fig. 1 b) are essentially coplanar with the 2,2′-bi­pyridine core, as indicated by the dihedral angles between the aromatic moieties, viz. 8.98 (5) and 9.90 (6)° in (I) and 2.66 (14)° in (II). On the other hand, the indole moiety and the bipyridyl ring are out of plane in (III) (Fig. 1 c) in order to reduce the van de Waals repulsion between H5 with H19 and H3 with H17, the dihedral angle between the mean planes of the bi­pyridine core and indole ring being 55.82 (3)°.

Figure 1.

Figure 1

View of the asymmetric unit of (a) (I), (b) (II), and (c) (III) showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N28 0.95 2.53 3.472 (2) 169
C26—H26⋯N7i 0.95 2.55 3.487 (3) 171

Symmetry code: (i) Inline graphic.

The 2,2′-bipyridyl groups in the three compounds exhibit trans conformations and the pyridine rings are essentially co-planar, as indicated by the dihedral angles between the best planes through the two pyridine rings, viz. 3.40 (9) and 10.81 (9)° in (I), 0.4 (2)° in (II) and 11.66 (7)° in (III). These values are within the range 0.8–28.5° observed for the 2,2′-bi­pyridine derivatives substituted at the 4-position with an aromatic substituent (Table 4). All of these structural characteristics are consistent with those in our previous report (Nguyen et al., 2014).

Table 4. 4-Substituted 2,2′-bi­pyridines present in the Cambridge Structural Databasea .

The dihedral angle py–py is defined as the angle between the best planes through both pyridine rings and the dihedral angle py–Ar is defined as the angle between the best planes through the 4-substituted pyridine and the aromatic substituent.

4-Substituent CSD refcode Dihedral angle py–py (°) Dihedral angle py–Ar (°) Reference
(substituted) phen­yl EWOYEW 0.8 9.1 Ramakrishnan et al. (2016)
  EWOXIZ 7.8/28.5/12.5 35.8/32.8/40.8 Ramakrishnan et al. (2016)
  ZOZRIF 6.6 24.5 Wang et al. (1996)
  RIPQUC 15.7 42.9 Cargill Thompson et al. (1997)
triazine MULRUI 14.2/3.7/18.5 8.1/6.1/25.2 Laramée-Milette et al. (2015)
(substituted) naphthalene EWOXUL 2.8/10.8/1.8 6.0/26.1/32.9 Ramakrishnan et al. (2016)
  EWOYIA 18.2/20.8 34.8/31.7 Ramakrishnan et al. (2016)
  OKAGOX 23.0/9.6 44.6/39.3 He et al. (2011)
2,2′-bi­pyridine TEBGAI 3.2/2.7 0.0/0.0 Honey & Steel (1991)
anthracene EWOWUK 4.0 73.8 Ramakrishnan et al. (2016)
phenanthrene EWOXAR 5.2 64.8 Ramakrishnan et al. (2016)
  EWOXEV 11.1 53.1 Ramakrishnan et al. (2016)
pyrene EWOXOF 4.0 51.6 Ramakrishnan et al. (2016)

Note: (a) Groom et al. (2016).

In conclusion, we have described facile synthetic procedures for 4-alkynylated and 4-aryl­ated 2,2′-bi­pyridines by means of the Sonogashira and Suzuki–Miyaura cross-coupling reactions of 4-bromo-2,2′-bi­pyridine. Based on this strategy, two novel 4-alkynylbi­pyridines and one 4-aryl-2,2′-bi­pyridine were synthesized whose structures were partially elucidated by NMR spectroscopic methods. In addition, the X-ray structural analysis revealed the planarity of the 4-alkynylbi­pyridines as the triple-bond linker separates the bi­pyridine and the introduced aromatic parts. This provides a hint for fine-tuning the electronic properties of this ligand by introducing suitable substituents. On the other hand, the introduced heterocyclic ring in compound (III), formed via Suzuki–Miyaura cross-coupling is twisted from the 2,2′-bi­pyridine ring due to the van der Waals repulsive force of the hydrogen atoms in close proximity.

Supra­molecular features  

The crystal packing of (I) is dominated by πpyridine–πpyridine and πpyridine–πphen­yl stacking inter­actions [Fig. 2; Cg1⋯Cg3i = 3.7769 (11) and Cg4⋯Cg5ii = 3.8707 (11) Å; Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C2–C6, C15–C20, N22/C23–27 and N28/C29–C33 rings, respectively; symmetry codes: (i) −x, −y, −z; (ii) −x, −y + 1, −z]. The mol­ecules lie in layers parallel to (30Inline graphic) and within these planes, neighboring mol­ecules inter­act with each other through C—H⋯N hydrogen bonds (Table 1).

Figure 2.

Figure 2

Partial crystal packing of (I) showing C—H⋯N (blue dotted lines) and π–π (gray dotted lines) inter­actions. [Symmetry codes: (i) −x, −y, −z; (ii) −x, −y + 1, −z; (iii) x, y + 1, z].

Similarly, π–π inter­actions between the pyridine rings of (II) result in columms of mol­ecules along the a-axis direction [Cg1⋯Cg1i = Cg2⋯Cg2i = Cg3⋯Cg3i = 3.7436 (3) Å; Cg1, Cg2, and Cg3 are centroids of the N1/C2–C6; N7/C7–C12 and N15/C16–C20 rings, respectively; symmetry code: (i) x + 1, y, z]. Neighboring columns inter­act by C—H⋯N hydrogen bonds (Fig. 3, Table 2). In between the columns, large voids (375 Å3) contain disordered solvent mol­ecules.

Figure 3.

Figure 3

Crystal packing of (II) viewed along the a axis. C—H⋯N hydrogen bonds between neighboring columns of stacked mol­ecules are shown as blue dotted lines. Voids are contoured (green grid) at 0.2 Å away from the mol­ecular surface resulting in a total void volume of 375 Å3. [Symmetry codes: (i) x − 1, −y + Inline graphic, z − Inline graphic; (ii) x + 1, −y + Inline graphic, z + Inline graphic].

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N7i 0.95 2.55 3.475 (5) 163
C18—H18⋯N1ii 0.95 2.60 3.509 (5) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The mol­ecules in the crystal packing of (III) are arranged in zigzag chains running along the c axis by hydrogen-bonding inter­actions in a head-to-tail manner between N13—H13⋯N7i [symmetry code: (i) x, −y + Inline graphic, z + Inline graphic; Table 3, Fig. 4]. These chains inter­act by π–π stacking between pyridine rings [Cg2⋯Cg3i = 3.6920 (8) Å; Cg2 and Cg3 are the centroids of the N1/C2–C6 and N7/C8–C12 rings, respectively; symmetry code: (i) x, −y + Inline graphic, z + Inline graphic] and C—H⋯π inter­actions (Table 3).

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N13/C14–C16/C21, N1/C2–C6, N7/C8–C12 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯N7i 0.88 2.22 3.002 (2) 148
C14—H14⋯N1ii 0.95 2.39 3.336 (2) 176
C5—H5⋯Cg1iii 0.95 2.58 3.3371 (14) 137
C6—H6⋯Cg4iii 0.95 2.78 3.5268 (14) 136
C11—H11⋯Cg4iv 0.95 2.56 3.3548 (15) 141
C17—H17⋯Cg2v 0.95 2.85 3.6555 (15) 143
C20—H20⋯Cg3vi 0.95 2.86 3.5814 (16) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 4.

Figure 4

Crystal packing of (III) showing N—H⋯N hydrogen bonds (blue dotted lines) and π–π (gray dotted lines) inter­actions·[Symmetry codes: (i) x, −y + Inline graphic, z + Inline graphic; (ii) x, −y + Inline graphic, z − Inline graphic; (iii) x, −y + Inline graphic, z − Inline graphic; (iv) x, −y + Inline graphic, z + Inline graphic].

Database survey  

An extension of the π-conjugated system of 2,2′-bi­pyridine can be obtained by the introduction of an aromatic substituent. A search in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016) for crystal structures of 2,2′-bi­pyridine derivatives substituted at the 4-position with an aromatic substituent resulted in 13 unique hits (excluding organometallic compounds) with substituents ranging from smaller phenyl and triazine rings to bi­pyridine, naphthalene, anthracene and phenanthrene to a larger pyrene ring (Table 4). However, it is evident from the dihedral angle between the best planes through pyridine and its aromatic 4-substituent (varying from 0.0 to 73.8°) that the degree of extension of the π-conjugated system depends on the steric hindrance of the substituent and the π–π inter­actions in the crystal packing.

Synthesis and crystallization  

The compound 4-bromo-2,2′-bi­pyridine was prepared using literature procedures (Egbe et al., 2001). The alkynylated and aryl­ated Bpy derivatives (I), (II), and (III) were prepared by the palladium-catalyzed Sonogashira and the palladium-catalyzed Suzuki–Miyaura cross-coupling reactions.

( a ) Synthesis of 4-(4-methyl­phenyl­ethyn­yl)-2,2′-bi­pyridine (I) by the Sonogashira reaction: Toluene (4.0 ml) was deaerated by exchanging between a vacuum and a stream of argon (3 times). To this argon-saturated solution were added 4-bromo-2,2′-bi­pyridine (59 mg, 0.25 mmol, 1.0 equiv), Pd(PPh3)4 (28.5 mg, 0.025 mmol, 10 mol%) and CuI (10 mg, 0.050 mmol, 20 mol%). The pale-yellow mixture obtained was degassed again as described above. To the reaction mixture, a solution of p-tolyl­acetyl­ene (34.8 mg, 0.3 mmol, 1.2 equiv) in argon-saturated toluene (1.0 ml) was added dropwise over 15 minutes. The reaction mixture was heated at 323 K for 4 h. The reaction mixture turned reddish brown when the cross-coupling completed as indicated by TLC (EtOAc:n-hexane 1:4, v/v). The reaction mixture was diluted with EtOAc, washed with water (3 times), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by SiO2 column chromatography to furnish the 4-alkynated 2,2′-bi­pyridine (I) as a brownish yellow solid (43 mg, 64%). M.p. 365–367 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.70 (dt, J = 4.5 Hz and 0.5 Hz, 1 H), 8.65 (d, J = 5.0 Hz, 1 H), 8.52 (s, 1 H), 8.40 (dd, J = 8.0 Hz and 0.5 Hz, 1 H), 7.82 (td, J = 7.5 Hz and 1.5 Hz, 1 H), 7.45 (d, J = 8 Hz, 2 H, Ar), 7.38 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 7.32 (m, 1 H), 7.19 (d, J = 8 Hz, 2 H, Ar), 2.38 (s, 3 H, –CH3). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.2, 155.6, 149.2, 149.1, 139.5, 137.0, 132.7, 131.8, 129.2, 125.2, 123.9, 123.2, 121.1, 119.2, 94.3 and 86.5 (C≡C), 21.6 (–CH3). Besides the desired cross-coupling product, a small amount of the Glaser homo-coupling by-product was also observed. Single crystals of (I) suitable for X-ray structure analysis were obtained by recrystallization from chloro­form.

( b ) 4-(Pyridine-3-ylethyn­yl)-2,2′-bi­pyridine (II): Following the same procedure for (I), except that no CuI co-catalyst was used, (II) was obtained from 4-bromo-2,2′-bi­pyridine (59 mg, 0.25 mmol, 1.0 equiv) and pyridine-3-yl­acetyl­ene (31 mg, 0.3 mmol, 1.2 equiv) after 4 h at 373 K as a white solid (50 mg, 78%). M.p. 398–400 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.81 (s, 1 H), 8.71 (s, 2 H), 8.62 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 8.57 (s, 1 H), 8.43 (d, J = 7.5 Hz, 1 H), 7.85 (m, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.33 (m, 2 H). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.3, 155.3, 152.4, 149.4, 149.3, 149.2, 138.7, 137.0, 131.6, 125.1, 124.0, 123.2, 123.2, 121.2, 119.5, 90.2 (C≡C). Single crystals of (II) suitable for X-ray structure analysis were obtained by recrystallization from ethyl acetate.

( c ) Synthesis of 4-(1 H -indol-4-yl)-2,2′-bi­pyridine (III) by the Suzuki–Miyaura reaction: Toluene was degassed by exchanging between a vacuum and a stream of argon (3 times). 5-Bromo-2,2′-bi­pyridine (58 mg, 0.25 mmol, 1.0 equiv) and Pd(Ph3P)4 (28.8 mg, 0.025 mmol, 10 mol%) were dissolved in this degassed toluene (4 mL). To the obtained solution, H2O (1 ml), K3PO4 (105.5 mg, 0.5 mmol, 2.0 equiv), and 1H-indol-4-ylboronic acid (48.3 mg, 0.3 mmol, 1.2 equiv) were added. The reaction was stirred vigorously under an argon atmosphere at 383 K until TLC (n-hexa­ne–ethyl acetate 95:5,v/v) indicated the complete consumption of the starting material. The reaction mixture was filtered to remove insoluble particles. The filtrate was washed several times with H2O, dried over Na2SO4, and concentrated under reduced pressure by rotary evaporation. The residue was purified by SiO2 column chromatography (n-hexa­ne–ethyl acetate 97:3, v/v) to furnish the desired 4-aryl­ated 2,2′-bi­pyridine (III) as a yellow solid (32.5 mg, 48%). M.p. 356–357 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.86 (br s, 1 H, NH indole), 8.74 (m, 2 H), 8.70 (d, J = 5.0 Hz, 1 H), 8.45 (d, J = 8.0 Hz, 1 H), 8.04 (t, J = 1.0 Hz, 1 H), 7.83 (td, J = 7.5 Hz and 2.0 Hz, 1 H), 7.60 (dd, J = 5.0 Hz and 2.0 Hz, 1 H), 7.55 (dd, J = 8.0 Hz and 2.0 Hz, 1 H), 7.42 (d, J = 7.5 Hz, 1 H), 7.31 (m, 1 H), 7.22 (t, J = 3.0 Hz, 1 H), 6.61 (t, J 2.0 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)) : δ(p.p.m.) 156.5, 156.3, 150.7, 149.4, 149.1, 136.9, 136.4, 129.9, 128.5, 125.3, 123.7, 121.7, 121.4, 121.3, 119.6, 119.2, 111.6, 103.2. Single crystals of (III) suitable for X-ray structure analysis were obtained by recrystallization from chloro­form.

Structure solution and refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The structures of (I) and (III) were solved using SHELXS97 (Sheldrick, 2008) and for (II) by charge flipping using Olex2.solve (Bourhis et al., 2015). All hydrogen atoms were placed in idealized positions and refined in a riding mode with U iso(H) = 1.2 times those of their parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 Å (aromatic) and 0.98 Å (CH3) and N—H distances of 0.88 Å.

Table 5. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C19H14N2 C17H11N3 C18H13N3
M r 270.32 257.29 271.31
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 9.8697 (7), 12.6040 (7), 22.8414 (13) 3.7436 (3), 34.146 (3), 10.7528 (9) 9.6951 (6), 12.0142 (7), 12.0376 (9)
β (°) 97.890 (6) 94.799 (8) 109.552 (8)
V3) 2814.5 (3) 1369.7 (2) 1321.28 (15)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.08 0.08
Crystal size (mm) 0.30 × 0.15 × 0.10 0.40 × 0.10 × 0.10 0.35 × 0.35 × 0.20
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector) Agilent SuperNova (single source at offset, Eos detector) Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015) Multi-scan (CrysAlis PRO; Rigaku OD, 2015) Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.552, 1.000 0.695, 1.000 0.993, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12597, 5747, 3728 4235, 1926, 1645 8569, 2692, 2363
R int 0.025 0.022 0.023
θmax (°) 26.4 23.3 26.4
(sin θ/λ)max−1) 0.625 0.555 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.146, 1.04 0.083, 0.208, 1.15 0.038, 0.095, 1.06
No. of reflections 5747 1926 2692
No. of parameters 381 181 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22 0.44, −0.29 0.21, −0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), Olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

For (II) a region of electron density amounting to the scattering from approximately 10.7 carbon atoms, apparently disordered in channels between columns of stacking mol­ecules, was removed with the SQUEEZE routine of PLATON (Spek, 2015) after it proved impossible to identify it with any reasonable solvent mol­ecule. A suggestion of possible twinning generated by PLATON (Spek, 2009) was further checked but subsequent refinement did not improve and was neglected.

Supplementary Material

Crystal structure: contains datablock(s) global, II, III, I. DOI: 10.1107/S2056989017004662/zs2378sup1.cif

e-73-00610-sup1.cif (760.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004662/zs2378Isup2.hkl

e-73-00610-Isup2.hkl (281.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017004662/zs2378IIsup3.hkl

e-73-00610-IIsup3.hkl (106.1KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017004662/zs2378IIIsup4.hkl

e-73-00610-IIIsup4.hkl (132.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378Isup5.cml

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378IIIsup7.cml

CCDC references: 1540011, 1540010, 1540009

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Hercules Foundation is thanked for supporting the purchase of the diffractometer.

supplementary crystallographic information

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Crystal data

C19H14N2 Dx = 1.276 Mg m3
Mr = 270.32 Melting point = 365–367 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.8697 (7) Å Cell parameters from 2955 reflections
b = 12.6040 (7) Å θ = 3.0–28.1°
c = 22.8414 (13) Å µ = 0.08 mm1
β = 97.890 (6)° T = 100 K
V = 2814.5 (3) Å3 Block, orange-colourless
Z = 8 0.30 × 0.15 × 0.10 mm
F(000) = 1136

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 5747 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3728 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.7°
ω scans h = −12→9
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −15→15
Tmin = 0.552, Tmax = 1.000 l = −25→28
12597 measured reflections

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.7915P] where P = (Fo2 + 2Fc2)/3
5747 reflections (Δ/σ)max < 0.001
381 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.22 e Å3

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1D 0.44761 (19) 0.30825 (17) 0.43143 (8) 0.0253 (5)
N22 0.21628 (16) 0.57648 (13) 0.03346 (7) 0.0249 (4)
C23 0.20493 (18) 0.47210 (15) 0.04431 (8) 0.0208 (4)
C24 0.23091 (18) 0.42918 (16) 0.10057 (8) 0.0219 (4)
H24 0.2225 0.3549 0.1063 0.026*
C25 0.26964 (18) 0.49598 (16) 0.14880 (8) 0.0219 (4)
C26 0.28021 (19) 0.60404 (16) 0.13795 (9) 0.0258 (5)
H26 0.3057 0.6525 0.1694 0.031*
C27 0.2527 (2) 0.63910 (16) 0.08023 (9) 0.0277 (5)
H27 0.2603 0.7130 0.0733 0.033*
N28 0.15236 (16) 0.29935 (12) 0.00260 (7) 0.0233 (4)
C29 0.16089 (18) 0.40394 (15) −0.00772 (8) 0.0209 (4)
C30 0.1289 (2) 0.44677 (16) −0.06415 (8) 0.0265 (5)
H30 0.1377 0.5208 −0.0705 0.032*
C31 0.0845 (2) 0.38021 (16) −0.11061 (9) 0.0300 (5)
H31 0.0618 0.4079 −0.1494 0.036*
C32 0.0731 (2) 0.27292 (17) −0.10025 (9) 0.0281 (5)
H32 0.0420 0.2252 −0.1314 0.034*
C33 0.1085 (2) 0.23716 (16) −0.04304 (9) 0.0252 (5)
H33 0.1009 0.1633 −0.0359 0.030*
C34 0.29879 (19) 0.45398 (16) 0.20791 (8) 0.0233 (5)
C35 0.32897 (18) 0.41970 (16) 0.25663 (8) 0.0226 (4)
C36 0.36776 (18) 0.38063 (16) 0.31578 (8) 0.0214 (4)
C37 0.38186 (19) 0.27264 (16) 0.32746 (9) 0.0251 (5)
H37 0.3647 0.2228 0.2961 0.030*
C38 0.4208 (2) 0.23774 (16) 0.38463 (9) 0.0275 (5)
H38 0.4294 0.1637 0.3921 0.033*
C39 0.4325 (2) 0.41597 (17) 0.41955 (8) 0.0284 (5)
H39 0.4490 0.4656 0.4510 0.034*
C40 0.3939 (2) 0.45209 (17) 0.36263 (8) 0.0271 (5)
H40 0.3851 0.5261 0.3553 0.033*
C41 0.4909 (2) 0.26987 (19) 0.49369 (9) 0.0352 (5)
H41A 0.5829 0.2963 0.5079 0.053*
H41B 0.4913 0.1921 0.4942 0.053*
H41C 0.4265 0.2962 0.5194 0.053*
N1 0.30594 (16) 0.07848 (13) 0.21333 (7) 0.0237 (4)
C2 0.29537 (18) −0.02679 (15) 0.20395 (8) 0.0197 (4)
C3 0.25839 (18) −0.07017 (16) 0.14808 (8) 0.0209 (4)
H3 0.2505 −0.1449 0.1432 0.025*
C4 0.23300 (18) −0.00324 (16) 0.09931 (8) 0.0212 (4)
C5 0.24522 (18) 0.10603 (16) 0.10882 (8) 0.0240 (5)
H5 0.2296 0.1547 0.0768 0.029*
C6 0.28062 (19) 0.14124 (15) 0.16604 (8) 0.0245 (4)
H6 0.2875 0.2157 0.1723 0.029*
N7 0.34111 (16) −0.19977 (13) 0.24599 (7) 0.0231 (4)
C8 0.32952 (18) −0.09575 (15) 0.25668 (8) 0.0202 (4)
C9 0.3519 (2) −0.05342 (16) 0.31331 (8) 0.0258 (5)
H9 0.3407 0.0204 0.3195 0.031*
C10 0.3908 (2) −0.12057 (17) 0.36064 (8) 0.0285 (5)
H10 0.4065 −0.0936 0.3998 0.034*
C11 0.4063 (2) −0.22683 (17) 0.34999 (9) 0.0290 (5)
H11 0.4345 −0.2745 0.3815 0.035*
C12 0.3800 (2) −0.26281 (17) 0.29244 (9) 0.0284 (5)
H12 0.3901 −0.3365 0.2854 0.034*
C13 0.19552 (19) −0.04592 (15) 0.04086 (8) 0.0216 (4)
C14 0.16254 (19) −0.08025 (16) −0.00793 (8) 0.0231 (4)
C15 0.12182 (18) −0.12154 (16) −0.06645 (8) 0.0220 (4)
C16 0.10184 (19) −0.22989 (16) −0.07588 (9) 0.0243 (4)
H16 0.1163 −0.2779 −0.0436 0.029*
C17 0.06086 (19) −0.26739 (16) −0.13242 (9) 0.0250 (5)
H17 0.0462 −0.3414 −0.1382 0.030*
C18 0.04061 (19) −0.20031 (16) −0.18071 (8) 0.0253 (5)
C19 0.06191 (19) −0.09226 (16) −0.17123 (8) 0.0265 (5)
H19 0.0494 −0.0449 −0.2039 0.032*
C20 0.10105 (19) −0.05250 (16) −0.11494 (8) 0.0250 (5)
H20 0.1138 0.0217 −0.1092 0.030*
C21 −0.0027 (2) −0.24223 (17) −0.24197 (9) 0.0319 (5)
H21A −0.0892 −0.2089 −0.2587 0.048*
H21B −0.0150 −0.3193 −0.2403 0.048*
H21C 0.0678 −0.2258 −0.2669 0.048*

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1D 0.0183 (10) 0.0412 (13) 0.0158 (10) −0.0012 (9) 0.0007 (8) 0.0047 (9)
N22 0.0308 (9) 0.0233 (9) 0.0196 (9) −0.0029 (7) 0.0002 (7) 0.0013 (7)
C23 0.0205 (10) 0.0229 (11) 0.0185 (10) 0.0015 (8) 0.0005 (8) 0.0026 (8)
C24 0.0234 (10) 0.0223 (11) 0.0191 (10) 0.0009 (8) −0.0001 (8) 0.0033 (8)
C25 0.0204 (10) 0.0272 (11) 0.0173 (10) 0.0007 (8) 0.0001 (8) 0.0015 (8)
C26 0.0295 (11) 0.0274 (11) 0.0195 (10) −0.0028 (9) −0.0006 (8) −0.0028 (9)
C27 0.0366 (12) 0.0235 (11) 0.0220 (11) −0.0024 (9) 0.0003 (9) 0.0027 (9)
N28 0.0273 (9) 0.0238 (9) 0.0184 (9) 0.0004 (7) 0.0014 (7) 0.0011 (7)
C29 0.0195 (10) 0.0248 (11) 0.0182 (10) 0.0022 (8) 0.0016 (8) 0.0025 (8)
C30 0.0332 (12) 0.0243 (11) 0.0206 (11) −0.0001 (9) −0.0017 (9) 0.0039 (8)
C31 0.0387 (12) 0.0337 (12) 0.0158 (10) 0.0006 (10) −0.0026 (9) 0.0034 (9)
C32 0.0319 (11) 0.0318 (11) 0.0194 (11) −0.0021 (9) −0.0002 (9) −0.0033 (9)
C33 0.0302 (11) 0.0238 (11) 0.0205 (11) −0.0006 (9) 0.0002 (9) 0.0008 (8)
C34 0.0224 (10) 0.0288 (12) 0.0179 (11) −0.0003 (8) −0.0001 (8) 0.0001 (9)
C35 0.0209 (10) 0.0275 (11) 0.0191 (10) 0.0006 (8) 0.0012 (8) −0.0017 (9)
C36 0.0181 (9) 0.0307 (11) 0.0150 (9) 0.0004 (8) 0.0011 (7) 0.0011 (8)
C37 0.0259 (10) 0.0305 (11) 0.0180 (11) −0.0007 (9) 0.0003 (8) −0.0006 (9)
C38 0.0297 (11) 0.0290 (12) 0.0229 (12) −0.0009 (9) 0.0002 (9) 0.0041 (9)
C39 0.0308 (11) 0.0375 (13) 0.0165 (10) 0.0004 (9) 0.0019 (8) −0.0050 (9)
C40 0.0299 (11) 0.0295 (12) 0.0214 (11) 0.0023 (9) 0.0014 (9) −0.0004 (9)
C41 0.0327 (12) 0.0542 (15) 0.0180 (11) −0.0016 (11) 0.0005 (9) 0.0055 (10)
N1 0.0274 (9) 0.0238 (9) 0.0190 (9) −0.0005 (7) −0.0003 (7) 0.0004 (7)
C2 0.0163 (9) 0.0252 (11) 0.0174 (10) 0.0006 (8) 0.0016 (7) 0.0010 (8)
C3 0.0217 (10) 0.0221 (11) 0.0185 (10) 0.0004 (8) 0.0013 (8) 0.0016 (8)
C4 0.0168 (9) 0.0291 (11) 0.0176 (10) −0.0002 (8) 0.0027 (7) 0.0010 (8)
C5 0.0240 (10) 0.0261 (11) 0.0209 (10) 0.0001 (8) −0.0009 (8) 0.0056 (8)
C6 0.0286 (11) 0.0199 (10) 0.0239 (11) −0.0009 (8) −0.0005 (8) 0.0031 (8)
N7 0.0272 (9) 0.0227 (9) 0.0189 (9) 0.0003 (7) 0.0012 (7) 0.0024 (7)
C8 0.0183 (9) 0.0246 (11) 0.0176 (10) −0.0009 (8) 0.0016 (7) 0.0012 (8)
C9 0.0328 (11) 0.0258 (11) 0.0181 (10) −0.0006 (9) 0.0015 (8) −0.0016 (8)
C10 0.0360 (12) 0.0342 (12) 0.0147 (10) −0.0028 (9) 0.0008 (9) −0.0002 (9)
C11 0.0322 (12) 0.0363 (12) 0.0176 (11) 0.0021 (10) 0.0000 (9) 0.0070 (9)
C12 0.0352 (12) 0.0279 (12) 0.0215 (12) 0.0042 (9) 0.0013 (9) 0.0047 (9)
C13 0.0212 (10) 0.0244 (11) 0.0185 (10) 0.0003 (8) 0.0004 (8) 0.0054 (8)
C14 0.0221 (10) 0.0265 (11) 0.0203 (11) 0.0024 (8) 0.0016 (8) 0.0048 (9)
C15 0.0179 (9) 0.0314 (12) 0.0160 (10) 0.0006 (8) 0.0004 (8) 0.0003 (8)
C16 0.0245 (10) 0.0298 (11) 0.0179 (10) 0.0028 (9) 0.0007 (8) 0.0034 (9)
C17 0.0256 (11) 0.0276 (11) 0.0213 (11) 0.0009 (9) 0.0014 (8) 0.0010 (9)
C18 0.0203 (10) 0.0353 (12) 0.0196 (10) 0.0012 (9) 0.0006 (8) −0.0003 (9)
C19 0.0266 (11) 0.0349 (12) 0.0175 (10) −0.0002 (9) 0.0005 (8) 0.0069 (9)
C20 0.0254 (10) 0.0280 (11) 0.0214 (11) 0.0001 (8) 0.0025 (8) 0.0019 (8)
C21 0.0346 (12) 0.0403 (13) 0.0190 (12) 0.0007 (10) −0.0025 (9) 0.0000 (9)

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Geometric parameters (Å, º)

C1D—C38 1.387 (3) N1—C2 1.346 (2)
C1D—C39 1.389 (3) N1—C6 1.335 (2)
C1D—C41 1.507 (3) C2—C3 1.390 (3)
N22—C23 1.346 (2) C2—C8 1.486 (3)
N22—C27 1.337 (2) C3—H3 0.9500
C23—C24 1.385 (3) C3—C4 1.392 (3)
C23—C29 1.482 (3) C4—C5 1.397 (3)
C24—H24 0.9500 C4—C13 1.440 (3)
C24—C25 1.398 (3) C5—H5 0.9500
C25—C26 1.391 (3) C5—C6 1.379 (3)
C25—C34 1.442 (3) C6—H6 0.9500
C26—H26 0.9500 N7—C8 1.341 (2)
C26—C27 1.382 (3) N7—C12 1.339 (2)
C27—H27 0.9500 C8—C9 1.389 (3)
N28—C29 1.344 (2) C9—H9 0.9500
N28—C33 1.328 (2) C9—C10 1.385 (3)
C29—C30 1.393 (3) C10—H10 0.9500
C30—H30 0.9500 C10—C11 1.374 (3)
C30—C31 1.376 (3) C11—H11 0.9500
C31—H31 0.9500 C11—C12 1.381 (3)
C31—C32 1.380 (3) C12—H12 0.9500
C32—H32 0.9500 C13—C14 1.198 (3)
C32—C33 1.381 (3) C14—C15 1.439 (3)
C33—H33 0.9500 C15—C16 1.392 (3)
C34—C35 1.193 (3) C15—C20 1.401 (3)
C35—C36 1.440 (3) C16—H16 0.9500
C36—C37 1.390 (3) C16—C17 1.383 (3)
C36—C40 1.396 (3) C17—H17 0.9500
C37—H37 0.9500 C17—C18 1.382 (3)
C37—C38 1.381 (3) C18—C19 1.390 (3)
C38—H38 0.9500 C18—C21 1.502 (3)
C39—H39 0.9500 C19—H19 0.9500
C39—C40 1.381 (3) C19—C20 1.385 (3)
C40—H40 0.9500 C20—H20 0.9500
C41—H41A 0.9800 C21—H21A 0.9800
C41—H41B 0.9800 C21—H21B 0.9800
C41—H41C 0.9800 C21—H21C 0.9800
C38—C1D—C39 118.15 (18) C6—N1—C2 116.97 (16)
C38—C1D—C41 121.38 (19) N1—C2—C3 122.60 (17)
C39—C1D—C41 120.47 (19) N1—C2—C8 116.32 (16)
C27—N22—C23 116.74 (16) C3—C2—C8 121.05 (18)
N22—C23—C24 122.87 (18) C2—C3—H3 120.3
N22—C23—C29 116.20 (16) C2—C3—C4 119.46 (19)
C24—C23—C29 120.93 (17) C4—C3—H3 120.3
C23—C24—H24 120.3 C3—C4—C5 118.08 (18)
C23—C24—C25 119.46 (18) C3—C4—C13 120.70 (18)
C25—C24—H24 120.3 C5—C4—C13 121.22 (17)
C24—C25—C34 120.98 (18) C4—C5—H5 121.0
C26—C25—C24 117.94 (17) C6—C5—C4 118.03 (18)
C26—C25—C34 121.07 (18) C6—C5—H5 121.0
C25—C26—H26 120.9 N1—C6—C5 124.84 (19)
C27—C26—C25 118.26 (18) N1—C6—H6 117.6
C27—C26—H26 120.9 C5—C6—H6 117.6
N22—C27—C26 124.72 (19) C12—N7—C8 117.27 (17)
N22—C27—H27 117.6 N7—C8—C2 116.08 (16)
C26—C27—H27 117.6 N7—C8—C9 122.57 (17)
C33—N28—C29 117.57 (16) C9—C8—C2 121.31 (18)
N28—C29—C23 116.51 (16) C8—C9—H9 120.5
N28—C29—C30 122.05 (18) C10—C9—C8 118.94 (19)
C30—C29—C23 121.43 (17) C10—C9—H9 120.5
C29—C30—H30 120.5 C9—C10—H10 120.6
C31—C30—C29 119.01 (19) C11—C10—C9 118.90 (18)
C31—C30—H30 120.5 C11—C10—H10 120.6
C30—C31—H31 120.3 C10—C11—H11 120.7
C30—C31—C32 119.32 (19) C10—C11—C12 118.55 (19)
C32—C31—H31 120.3 C12—C11—H11 120.7
C31—C32—H32 121.1 N7—C12—C11 123.7 (2)
C31—C32—C33 117.79 (19) N7—C12—H12 118.1
C33—C32—H32 121.1 C11—C12—H12 118.1
N28—C33—C32 124.24 (19) C14—C13—C4 178.9 (2)
N28—C33—H33 117.9 C13—C14—C15 179.5 (2)
C32—C33—H33 117.9 C16—C15—C14 120.93 (18)
C35—C34—C25 177.1 (2) C16—C15—C20 118.98 (18)
C34—C35—C36 178.5 (2) C20—C15—C14 120.09 (18)
C37—C36—C35 121.45 (18) C15—C16—H16 120.1
C37—C36—C40 118.79 (18) C17—C16—C15 119.80 (18)
C40—C36—C35 119.75 (18) C17—C16—H16 120.1
C36—C37—H37 120.0 C16—C17—H17 119.1
C38—C37—C36 120.05 (19) C18—C17—C16 121.87 (19)
C38—C37—H37 120.0 C18—C17—H17 119.1
C1D—C38—H38 119.2 C17—C18—C19 118.20 (18)
C37—C38—C1D 121.55 (19) C17—C18—C21 121.32 (19)
C37—C38—H38 119.2 C19—C18—C21 120.49 (18)
C1D—C39—H39 119.5 C18—C19—H19 119.5
C40—C39—C1D 120.98 (19) C20—C19—C18 121.07 (18)
C40—C39—H39 119.5 C20—C19—H19 119.5
C36—C40—H40 119.8 C15—C20—H20 120.0
C39—C40—C36 120.49 (19) C19—C20—C15 120.07 (19)
C39—C40—H40 119.8 C19—C20—H20 120.0
C1D—C41—H41A 109.5 C18—C21—H21A 109.5
C1D—C41—H41B 109.5 C18—C21—H21B 109.5
C1D—C41—H41C 109.5 C18—C21—H21C 109.5
H41A—C41—H41B 109.5 H21A—C21—H21B 109.5
H41A—C41—H41C 109.5 H21A—C21—H21C 109.5
H41B—C41—H41C 109.5 H21B—C21—H21C 109.5
C1D—C39—C40—C36 0.7 (3) N1—C2—C3—C4 1.0 (3)
N22—C23—C24—C25 0.5 (3) N1—C2—C8—N7 −169.28 (16)
N22—C23—C29—N28 178.53 (16) N1—C2—C8—C9 8.8 (3)
N22—C23—C29—C30 −2.1 (3) C2—N1—C6—C5 −0.2 (3)
C23—N22—C27—C26 0.6 (3) C2—C3—C4—C5 −0.4 (3)
C23—C24—C25—C26 0.1 (3) C2—C3—C4—C13 179.53 (17)
C23—C24—C25—C34 −179.39 (17) C2—C8—C9—C10 −176.47 (17)
C23—C29—C30—C31 −177.98 (18) C3—C2—C8—N7 9.0 (2)
C24—C23—C29—N28 −2.1 (3) C3—C2—C8—C9 −172.87 (17)
C24—C23—C29—C30 177.27 (18) C3—C4—C5—C6 −0.5 (3)
C24—C25—C26—C27 −0.4 (3) C4—C5—C6—N1 0.9 (3)
C25—C26—C27—N22 0.0 (3) C6—N1—C2—C3 −0.7 (3)
C27—N22—C23—C24 −0.9 (3) C6—N1—C2—C8 177.53 (16)
C27—N22—C23—C29 178.43 (17) N7—C8—C9—C10 1.5 (3)
N28—C29—C30—C31 1.4 (3) C8—C2—C3—C4 −177.15 (16)
C29—C23—C24—C25 −178.73 (17) C8—N7—C12—C11 1.0 (3)
C29—N28—C33—C32 1.0 (3) C8—C9—C10—C11 0.2 (3)
C29—C30—C31—C32 −0.2 (3) C9—C10—C11—C12 −1.1 (3)
C30—C31—C32—C33 −0.5 (3) C10—C11—C12—N7 0.6 (3)
C31—C32—C33—N28 0.1 (3) C12—N7—C8—C2 176.01 (16)
C33—N28—C29—C23 177.68 (16) C12—N7—C8—C9 −2.1 (3)
C33—N28—C29—C30 −1.7 (3) C13—C4—C5—C6 179.59 (17)
C34—C25—C26—C27 179.12 (18) C14—C15—C16—C17 179.10 (17)
C35—C36—C37—C38 179.24 (18) C14—C15—C20—C19 179.98 (17)
C35—C36—C40—C39 −179.36 (18) C15—C16—C17—C18 0.9 (3)
C36—C37—C38—C1D −0.5 (3) C16—C15—C20—C19 −0.3 (3)
C37—C36—C40—C39 −0.3 (3) C16—C17—C18—C19 −0.3 (3)
C38—C1D—C39—C40 −0.9 (3) C16—C17—C18—C21 179.44 (18)
C39—C1D—C38—C37 0.8 (3) C17—C18—C19—C20 −0.6 (3)
C40—C36—C37—C38 0.2 (3) C18—C19—C20—C15 0.9 (3)
C41—C1D—C38—C37 −179.64 (18) C20—C15—C16—C17 −0.6 (3)
C41—C1D—C39—C40 179.53 (18) C21—C18—C19—C20 179.61 (18)

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···N28 0.95 2.53 3.472 (2) 169
C26—H26···N7i 0.95 2.55 3.487 (3) 171

Symmetry code: (i) x, y+1, z.

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Crystal data

C17H11N3 F(000) = 536
Mr = 257.29 Dx = 1.248 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 3.7436 (3) Å Cell parameters from 1697 reflections
b = 34.146 (3) Å θ = 3.5–28.7°
c = 10.7528 (9) Å µ = 0.08 mm1
β = 94.799 (8)° T = 100 K
V = 1369.7 (2) Å3 Needle, colourless
Z = 4 0.40 × 0.10 × 0.10 mm

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 1926 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1645 reflections with I > 2σ(I)
Detector resolution: 15.9631 pixels mm-1 Rint = 0.022
ω scans θmax = 23.3°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −4→4
Tmin = 0.695, Tmax = 1.000 k = −37→33
4235 measured reflections l = −11→11

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083 H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0696P)2 + 4.7923P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
1926 reflections Δρmax = 0.44 e Å3
181 parameters Δρmin = −0.29 e Å3

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2656 (9) 0.68966 (10) 0.2378 (3) 0.0167 (8)
C2 0.4386 (11) 0.69652 (11) 0.3508 (4) 0.0147 (9)
C3 0.5026 (11) 0.73404 (11) 0.3962 (4) 0.0154 (9)
H3 0.6208 0.7378 0.4770 0.018*
C4 0.3928 (11) 0.76640 (12) 0.3231 (4) 0.0150 (9)
C5 0.2126 (11) 0.75954 (12) 0.2070 (4) 0.0166 (10)
H5 0.1294 0.7807 0.1548 0.020*
C6 0.1571 (11) 0.72098 (12) 0.1693 (4) 0.0170 (10)
H6 0.0343 0.7165 0.0897 0.020*
N7 0.7312 (9) 0.66830 (10) 0.5380 (3) 0.0168 (8)
C8 0.5578 (11) 0.66142 (11) 0.4254 (4) 0.0142 (9)
C9 0.4899 (11) 0.62361 (12) 0.3803 (4) 0.0177 (10)
H9 0.3668 0.6197 0.3004 0.021*
C10 0.6034 (12) 0.59197 (12) 0.4530 (4) 0.0187 (10)
H10 0.5582 0.5660 0.4244 0.022*
C11 0.7850 (11) 0.59893 (12) 0.5686 (4) 0.0176 (10)
H11 0.8691 0.5778 0.6206 0.021*
C12 0.8406 (11) 0.63710 (12) 0.6063 (4) 0.0186 (10)
H12 0.9646 0.6416 0.6857 0.022*
C13 0.4658 (11) 0.80521 (12) 0.3695 (4) 0.0150 (9)
C14 0.5307 (11) 0.83770 (12) 0.4099 (4) 0.0168 (10)
N15 0.5621 (10) 0.94601 (10) 0.4131 (3) 0.0185 (9)
C16 0.5068 (11) 0.90884 (12) 0.3788 (4) 0.0176 (10)
H16 0.3938 0.9039 0.2979 0.021*
C17 0.6047 (11) 0.87675 (11) 0.4544 (4) 0.0153 (9)
C18 0.7784 (11) 0.88416 (12) 0.5721 (4) 0.0170 (10)
H18 0.8565 0.8632 0.6258 0.020*
C19 0.8344 (11) 0.92252 (12) 0.6090 (4) 0.0197 (10)
H19 0.9457 0.9284 0.6895 0.024*
C20 0.7262 (11) 0.95225 (12) 0.5273 (4) 0.0200 (10)
H20 0.7701 0.9785 0.5533 0.024*

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0152 (19) 0.0180 (19) 0.0163 (19) −0.0010 (15) −0.0013 (15) −0.0006 (15)
C2 0.012 (2) 0.019 (2) 0.013 (2) −0.0016 (18) 0.0030 (17) −0.0006 (17)
C3 0.013 (2) 0.019 (2) 0.014 (2) −0.0009 (18) 0.0014 (18) −0.0006 (17)
C4 0.011 (2) 0.019 (2) 0.015 (2) 0.0016 (18) 0.0023 (17) 0.0005 (17)
C5 0.021 (2) 0.017 (2) 0.013 (2) −0.0011 (18) 0.0048 (18) 0.0021 (16)
C6 0.017 (2) 0.021 (2) 0.013 (2) 0.0005 (18) 0.0021 (18) −0.0003 (17)
N7 0.0190 (19) 0.0156 (19) 0.016 (2) 0.0019 (15) 0.0035 (15) 0.0008 (14)
C8 0.014 (2) 0.017 (2) 0.012 (2) −0.0003 (17) 0.0029 (17) −0.0003 (16)
C9 0.018 (2) 0.019 (2) 0.016 (2) −0.0015 (18) 0.0005 (18) −0.0038 (17)
C10 0.020 (2) 0.012 (2) 0.025 (2) −0.0013 (18) 0.0066 (19) −0.0031 (18)
C11 0.014 (2) 0.017 (2) 0.022 (2) 0.0028 (18) 0.0035 (19) 0.0048 (18)
C12 0.020 (2) 0.021 (2) 0.015 (2) 0.0047 (18) 0.0038 (18) 0.0017 (18)
C13 0.014 (2) 0.018 (2) 0.013 (2) −0.0015 (18) 0.0024 (17) 0.0029 (18)
C14 0.014 (2) 0.020 (2) 0.016 (2) 0.0016 (18) 0.0020 (18) 0.0024 (18)
N15 0.024 (2) 0.0155 (18) 0.016 (2) 0.0005 (16) 0.0045 (16) 0.0019 (14)
C16 0.015 (2) 0.023 (2) 0.016 (2) 0.0004 (18) 0.0068 (18) −0.0005 (18)
C17 0.016 (2) 0.015 (2) 0.016 (2) 0.0022 (18) 0.0057 (18) −0.0006 (17)
C18 0.014 (2) 0.016 (2) 0.021 (2) 0.0029 (18) 0.0018 (18) 0.0047 (17)
C19 0.019 (2) 0.021 (2) 0.018 (2) −0.0005 (19) −0.0010 (19) −0.0014 (18)
C20 0.021 (2) 0.015 (2) 0.024 (3) 0.0008 (18) 0.003 (2) −0.0004 (18)

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Geometric parameters (Å, º)

N1—C2 1.348 (5) C10—C11 1.387 (6)
N1—C6 1.342 (5) C11—H11 0.9500
C2—C3 1.385 (6) C11—C12 1.375 (6)
C2—C8 1.490 (6) C12—H12 0.9500
C3—H3 0.9500 C13—C14 1.209 (6)
C3—C4 1.398 (6) C14—C17 1.436 (6)
C4—C5 1.388 (6) N15—C16 1.333 (5)
C4—C13 1.434 (6) N15—C20 1.344 (6)
C5—H5 0.9500 C16—H16 0.9500
C5—C6 1.388 (6) C16—C17 1.395 (6)
C6—H6 0.9500 C17—C18 1.397 (6)
N7—C8 1.345 (5) C18—H18 0.9500
N7—C12 1.338 (5) C18—C19 1.380 (6)
C8—C9 1.395 (6) C19—H19 0.9500
C9—H9 0.9500 C19—C20 1.381 (6)
C9—C10 1.379 (6) C20—H20 0.9500
C10—H10 0.9500
C6—N1—C2 117.1 (3) C11—C10—H10 120.7
N1—C2—C3 122.3 (4) C10—C11—H11 120.7
N1—C2—C8 116.4 (3) C12—C11—C10 118.5 (4)
C3—C2—C8 121.2 (4) C12—C11—H11 120.7
C2—C3—H3 120.0 N7—C12—C11 124.1 (4)
C2—C3—C4 119.9 (4) N7—C12—H12 117.9
C4—C3—H3 120.0 C11—C12—H12 117.9
C3—C4—C13 119.8 (4) C14—C13—C4 179.1 (4)
C5—C4—C3 118.0 (4) C13—C14—C17 178.4 (4)
C5—C4—C13 122.2 (4) C16—N15—C20 116.9 (4)
C4—C5—H5 120.9 N15—C16—H16 118.0
C4—C5—C6 118.2 (4) N15—C16—C17 124.0 (4)
C6—C5—H5 120.9 C17—C16—H16 118.0
N1—C6—C5 124.4 (4) C16—C17—C14 120.1 (4)
N1—C6—H6 117.8 C16—C17—C18 117.8 (4)
C5—C6—H6 117.8 C18—C17—C14 122.2 (4)
C12—N7—C8 117.2 (3) C17—C18—H18 120.7
N7—C8—C2 116.4 (3) C19—C18—C17 118.7 (4)
N7—C8—C9 122.3 (4) C19—C18—H18 120.7
C9—C8—C2 121.3 (4) C18—C19—H19 120.5
C8—C9—H9 120.3 C18—C19—C20 119.1 (4)
C10—C9—C8 119.3 (4) C20—C19—H19 120.5
C10—C9—H9 120.3 N15—C20—C19 123.5 (4)
C9—C10—H10 120.7 N15—C20—H20 118.2
C9—C10—C11 118.6 (4) C19—C20—H20 118.2
N1—C2—C3—C4 −1.3 (6) C8—N7—C12—C11 −0.4 (6)
N1—C2—C8—N7 179.9 (3) C8—C9—C10—C11 −0.6 (6)
N1—C2—C8—C9 −0.5 (6) C9—C10—C11—C12 0.7 (6)
C2—N1—C6—C5 0.2 (6) C10—C11—C12—N7 −0.2 (7)
C2—C3—C4—C5 1.7 (6) C12—N7—C8—C2 −179.9 (3)
C2—C3—C4—C13 −178.8 (4) C12—N7—C8—C9 0.5 (6)
C2—C8—C9—C10 −179.6 (4) C13—C4—C5—C6 179.3 (4)
C3—C2—C8—N7 −0.4 (6) C14—C17—C18—C19 −178.9 (4)
C3—C2—C8—C9 179.3 (4) N15—C16—C17—C14 179.3 (4)
C3—C4—C5—C6 −1.1 (6) N15—C16—C17—C18 −1.5 (6)
C4—C5—C6—N1 0.2 (6) C16—N15—C20—C19 −0.6 (6)
C6—N1—C2—C3 0.4 (6) C16—C17—C18—C19 1.9 (6)
C6—N1—C2—C8 −179.9 (3) C17—C18—C19—C20 −1.8 (6)
N7—C8—C9—C10 0.0 (6) C18—C19—C20—N15 1.1 (7)
C8—C2—C3—C4 178.9 (4) C20—N15—C16—C17 0.8 (6)

(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···N7i 0.95 2.55 3.475 (5) 163
C18—H18···N1ii 0.95 2.60 3.509 (5) 161

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2.

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Crystal data

C18H13N3 Dx = 1.364 Mg m3
Mr = 271.31 Melting point = 398–400 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6951 (6) Å Cell parameters from 4854 reflections
b = 12.0142 (7) Å θ = 3.5–29.1°
c = 12.0376 (9) Å µ = 0.08 mm1
β = 109.552 (8)° T = 100 K
V = 1321.28 (15) Å3 Block, orange
Z = 4 0.35 × 0.35 × 0.20 mm
F(000) = 568

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 2692 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2363 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.023
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.8°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −13→15
Tmin = 0.993, Tmax = 1.000 l = −15→11
8569 measured reflections

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.7137P] where P = (Fo2 + 2Fc2)/3
2692 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.31593 (11) 0.25441 (9) 0.52186 (10) 0.0149 (2)
C2 0.25581 (13) 0.33233 (11) 0.43923 (11) 0.0136 (3)
C3 0.26375 (13) 0.44551 (11) 0.46516 (11) 0.0143 (3)
H3 0.2241 0.4982 0.4039 0.017*
C4 0.33001 (13) 0.48165 (11) 0.58118 (11) 0.0140 (3)
C5 0.39151 (13) 0.40081 (11) 0.66627 (11) 0.0155 (3)
H5 0.4381 0.4211 0.7464 0.019*
C6 0.38351 (14) 0.29005 (11) 0.63189 (11) 0.0154 (3)
H6 0.4290 0.2361 0.6904 0.018*
N7 0.12564 (12) 0.36675 (9) 0.23212 (10) 0.0173 (3)
C8 0.17196 (13) 0.29055 (11) 0.31882 (11) 0.0143 (3)
C9 0.14054 (14) 0.17732 (11) 0.29891 (12) 0.0169 (3)
H9 0.1737 0.1253 0.3617 0.020*
C10 0.06031 (14) 0.14199 (11) 0.18635 (12) 0.0186 (3)
H10 0.0385 0.0653 0.1709 0.022*
C11 0.01227 (14) 0.21922 (12) 0.09662 (12) 0.0183 (3)
H11 −0.0428 0.1971 0.0186 0.022*
C12 0.04713 (14) 0.33039 (12) 0.12420 (12) 0.0181 (3)
H12 0.0133 0.3838 0.0628 0.022*
N13 0.25953 (12) 0.93647 (9) 0.65298 (10) 0.0172 (3)
H13 0.2204 0.9745 0.6974 0.021*
C14 0.31571 (14) 0.98129 (11) 0.57170 (12) 0.0182 (3)
H14 0.3184 1.0585 0.5553 0.022*
C15 0.36687 (14) 0.89859 (11) 0.51831 (12) 0.0170 (3)
H15 0.4112 0.9076 0.4594 0.020*
C16 0.34102 (13) 0.79562 (11) 0.56791 (11) 0.0143 (3)
C17 0.36292 (13) 0.68330 (11) 0.54613 (11) 0.0142 (3)
H17 0.4045 0.6637 0.4877 0.017*
C18 0.32337 (13) 0.60125 (11) 0.61069 (11) 0.0139 (3)
C19 0.26479 (14) 0.63113 (11) 0.69974 (11) 0.0149 (3)
H19 0.2429 0.5742 0.7460 0.018*
C20 0.23857 (14) 0.74072 (11) 0.72121 (11) 0.0156 (3)
H20 0.1974 0.7597 0.7801 0.019*
C21 0.27468 (13) 0.82248 (11) 0.65331 (11) 0.0146 (3)

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0145 (5) 0.0133 (5) 0.0168 (6) 0.0003 (4) 0.0051 (4) 0.0009 (4)
C2 0.0121 (6) 0.0143 (6) 0.0149 (6) 0.0002 (5) 0.0054 (5) 0.0004 (5)
C3 0.0150 (6) 0.0130 (6) 0.0143 (6) 0.0006 (5) 0.0040 (5) 0.0019 (5)
C4 0.0121 (6) 0.0140 (6) 0.0169 (7) −0.0011 (5) 0.0061 (5) 0.0003 (5)
C5 0.0132 (6) 0.0176 (7) 0.0143 (6) −0.0012 (5) 0.0026 (5) −0.0004 (5)
C6 0.0138 (6) 0.0148 (6) 0.0167 (6) 0.0018 (5) 0.0041 (5) 0.0035 (5)
N7 0.0182 (5) 0.0159 (6) 0.0166 (6) −0.0010 (4) 0.0045 (4) 0.0009 (5)
C8 0.0132 (6) 0.0148 (6) 0.0158 (6) 0.0007 (5) 0.0060 (5) −0.0003 (5)
C9 0.0165 (6) 0.0142 (7) 0.0193 (7) 0.0014 (5) 0.0050 (5) 0.0006 (5)
C10 0.0146 (6) 0.0155 (7) 0.0244 (7) −0.0004 (5) 0.0050 (5) −0.0052 (6)
C11 0.0133 (6) 0.0244 (7) 0.0165 (7) −0.0009 (5) 0.0039 (5) −0.0053 (6)
C12 0.0183 (6) 0.0196 (7) 0.0156 (7) 0.0005 (5) 0.0044 (5) 0.0018 (5)
N13 0.0210 (6) 0.0122 (6) 0.0171 (6) 0.0021 (5) 0.0049 (4) −0.0019 (4)
C14 0.0223 (7) 0.0124 (6) 0.0164 (7) −0.0016 (5) 0.0017 (5) 0.0015 (5)
C15 0.0208 (6) 0.0147 (6) 0.0142 (6) −0.0029 (5) 0.0040 (5) 0.0010 (5)
C16 0.0134 (6) 0.0151 (6) 0.0118 (6) −0.0013 (5) 0.0007 (5) −0.0005 (5)
C17 0.0137 (6) 0.0145 (6) 0.0133 (6) −0.0003 (5) 0.0031 (5) −0.0015 (5)
C18 0.0118 (6) 0.0143 (6) 0.0130 (6) −0.0001 (5) 0.0009 (5) −0.0009 (5)
C19 0.0161 (6) 0.0149 (6) 0.0128 (6) −0.0024 (5) 0.0036 (5) 0.0007 (5)
C20 0.0153 (6) 0.0184 (7) 0.0133 (6) −0.0003 (5) 0.0050 (5) −0.0018 (5)
C21 0.0140 (6) 0.0128 (6) 0.0141 (6) 0.0003 (5) 0.0006 (5) −0.0025 (5)

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Geometric parameters (Å, º)

N1—C2 1.3481 (17) C11—C12 1.3904 (19)
N1—C6 1.3365 (17) C12—H12 0.9500
C2—C3 1.3915 (18) N13—H13 0.8800
C2—C8 1.4916 (18) N13—C14 1.3786 (18)
C3—H3 0.9500 N13—C21 1.3773 (17)
C3—C4 1.3969 (18) C14—H14 0.9500
C4—C5 1.3925 (18) C14—C15 1.3637 (19)
C4—C18 1.4867 (18) C15—H15 0.9500
C5—H5 0.9500 C15—C16 1.4318 (18)
C5—C6 1.3880 (18) C16—C17 1.4043 (18)
C6—H6 0.9500 C16—C21 1.4202 (18)
N7—C8 1.3473 (17) C17—H17 0.9500
N7—C12 1.3401 (17) C17—C18 1.3864 (18)
C8—C9 1.3972 (18) C18—C19 1.4170 (18)
C9—H9 0.9500 C19—H19 0.9500
C9—C10 1.3841 (19) C19—C20 1.3817 (18)
C10—H10 0.9500 C20—H20 0.9500
C10—C11 1.381 (2) C20—C21 1.3953 (19)
C11—H11 0.9500
C6—N1—C2 117.14 (11) N7—C12—H12 118.0
N1—C2—C3 122.36 (12) C11—C12—H12 118.0
N1—C2—C8 116.34 (11) C14—N13—H13 125.6
C3—C2—C8 121.20 (11) C21—N13—H13 125.6
C2—C3—H3 120.0 C21—N13—C14 108.87 (11)
C2—C3—C4 120.03 (12) N13—C14—H14 125.0
C4—C3—H3 120.0 C15—C14—N13 110.02 (12)
C3—C4—C18 119.81 (11) C15—C14—H14 125.0
C5—C4—C3 117.33 (12) C14—C15—H15 126.5
C5—C4—C18 122.72 (12) C14—C15—C16 106.91 (12)
C4—C5—H5 120.6 C16—C15—H15 126.5
C6—C5—C4 118.81 (12) C17—C16—C15 133.94 (12)
C6—C5—H5 120.6 C17—C16—C21 119.13 (12)
N1—C6—C5 124.24 (12) C21—C16—C15 106.88 (11)
N1—C6—H6 117.9 C16—C17—H17 120.3
C5—C6—H6 117.9 C18—C17—C16 119.41 (12)
C12—N7—C8 117.60 (12) C18—C17—H17 120.3
N7—C8—C2 117.13 (11) C17—C18—C4 120.74 (12)
N7—C8—C9 122.12 (12) C17—C18—C19 120.00 (12)
C9—C8—C2 120.73 (12) C19—C18—C4 119.07 (11)
C8—C9—H9 120.5 C18—C19—H19 119.1
C10—C9—C8 119.03 (13) C20—C19—C18 121.89 (12)
C10—C9—H9 120.5 C20—C19—H19 119.1
C9—C10—H10 120.3 C19—C20—H20 121.2
C11—C10—C9 119.44 (13) C19—C20—C21 117.60 (12)
C11—C10—H10 120.3 C21—C20—H20 121.2
C10—C11—H11 121.1 N13—C21—C16 107.31 (11)
C10—C11—C12 117.85 (12) N13—C21—C20 130.87 (12)
C12—C11—H11 121.1 C20—C21—C16 121.82 (12)
N7—C12—C11 123.95 (13)
N1—C2—C3—C4 −2.97 (19) C10—C11—C12—N7 0.7 (2)
N1—C2—C8—N7 −172.50 (11) C12—N7—C8—C2 −178.40 (11)
N1—C2—C8—C9 9.08 (17) C12—N7—C8—C9 0.00 (19)
C2—N1—C6—C5 2.00 (19) N13—C14—C15—C16 0.34 (15)
C2—C3—C4—C5 2.62 (18) C14—N13—C21—C16 −0.78 (14)
C2—C3—C4—C18 −173.06 (11) C14—N13—C21—C20 178.21 (13)
C2—C8—C9—C10 178.90 (12) C14—C15—C16—C17 176.75 (14)
C3—C2—C8—N7 10.94 (18) C14—C15—C16—C21 −0.80 (14)
C3—C2—C8—C9 −167.48 (12) C15—C16—C17—C18 −179.18 (13)
C3—C4—C5—C6 −0.18 (18) C15—C16—C21—N13 0.97 (14)
C3—C4—C18—C17 −50.68 (17) C15—C16—C21—C20 −178.13 (11)
C3—C4—C18—C19 124.26 (13) C16—C17—C18—C4 173.34 (11)
C4—C5—C6—N1 −2.2 (2) C16—C17—C18—C19 −1.55 (18)
C4—C18—C19—C20 −171.75 (11) C17—C16—C21—N13 −177.02 (11)
C5—C4—C18—C17 133.88 (13) C17—C16—C21—C20 3.88 (18)
C5—C4—C18—C19 −51.18 (17) C17—C18—C19—C20 3.23 (19)
C6—N1—C2—C3 0.64 (18) C18—C4—C5—C6 175.36 (11)
C6—N1—C2—C8 −175.87 (11) C18—C19—C20—C21 −1.27 (19)
N7—C8—C9—C10 0.56 (19) C19—C20—C21—N13 178.86 (13)
C8—C2—C3—C4 173.38 (11) C19—C20—C21—C16 −2.28 (18)
C8—N7—C12—C11 −0.6 (2) C21—N13—C14—C15 0.28 (15)
C8—C9—C10—C11 −0.48 (19) C21—C16—C17—C18 −1.86 (18)
C9—C10—C11—C12 −0.12 (19)

(III) 4-(Indol-4-yl)-2,2'-bipyridine. Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N13/C14–C16/C21, N1/C2–C6, N7/C8–C12 and C16–C21, respectively.

D—H···A D—H H···A D···A D—H···A
N13—H13···N7i 0.88 2.22 3.002 (2) 148
C14—H14···N1ii 0.95 2.39 3.336 (2) 176
C5—H5···Cg1iii 0.95 2.58 3.3371 (14) 137
C6—H6···Cg4iii 0.95 2.78 3.5268 (14) 136
C11—H11···Cg4iv 0.95 2.56 3.3548 (15) 141
C17—H17···Cg2v 0.95 2.85 3.6555 (15) 143
C20—H20···Cg3vi 0.95 2.86 3.5814 (16) 133

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1.

Funding Statement

This work was funded by Hercules Foundation (Belgium) grant AKUL/09/0035.

References

  1. Al Abdel Hamid, A. A. G., Al-Khateeb, M., Tahat, Z. A., Qudah, M., Obeidat, S. M. & Rawashdeh, A. M. (2011). Int. J. Inorg. Chem. (Article ID 843051, 6 pages).
  2. Blangetti, M., Rosso, H., Prandi, C., Deagostino, A. & Venturello, P. (2013). Molecules, 18, 1188–1213. [DOI] [PMC free article] [PubMed]
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Cargill Thompson, A. M. W., Smailes, M. C. C., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 737–744.
  5. Chen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. (2012). Chem. Soc. Rev. 41, 7909–7937. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Egbe, D. A. M., Amer, A. M. & Klemm, E. (2001). Des. Monomers Polym. 4, 169–175.
  8. Grätzel, M. (2003). J. Photochem. Photobiol. Photochem. Rev. 4, 145–153.
  9. Grätzel, M. (2009). Acc. Chem. Res. 42, 1788–1798. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. He, Y., Bian, Z., Kang, C. & Gao, L. (2011). Chem. Commun. 47, 1589–1591. [DOI] [PubMed]
  12. Honey, G. E. & Steel, P. J. (1991). Acta Cryst. C47, 2247–2249.
  13. Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. [DOI] [PubMed]
  14. Kitanosono, T., Zhu, L., Liu, C., Xu, P. & Kobayashi, S. (2015). J. Am. Chem. Soc. 137, 15422–15425. [DOI] [PubMed]
  15. Kumar, A., Rao, G. K., Saleem, F., Kumar, R. & Singh, A. K. (2014). J. Hazard. Mater. 269, 9–17. [DOI] [PubMed]
  16. Laramée-Milette, B., Lussier, F., Ciofini, I. & Hanan, G. S. (2015). Dalton Trans. 44, 11551–11561. [DOI] [PubMed]
  17. Lewis, J. E. M., Bordoli, R. J., Denis, M., Fletcher, C. J., Galli, M., Neal, E. A., Rochette, E. M. & Goldup, S. M. (2016). Chem. Sci. 7, 3154–3161. [DOI] [PMC free article] [PubMed]
  18. Li, M., Yu, J., Chen, Z., Totani, K., Watanabe, T. & Miyata, S. (2000). Jpn. J. Appl. Phys. 39, L1171–L1173.
  19. Miyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866–867.
  20. Negishi, E. & de Meijere, A. (2002). In Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley: New York.
  21. Newkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235–254.
  22. Nguyen, N. H., Mai, A. T., Dang, X. T. & Luong, T. T. T. (2015). J. Sol. Energy Eng. 137, 021006-1-5.
  23. Nguyen, H., Nguyen Bich, N., Dang, T. T. & Van Meervelt, L. (2014). Acta Cryst. C70, 895–899. [DOI] [PubMed]
  24. Norris, M. R., Concepcion, J. J., Glasson, C. R. K., Fang, Z., Lapides, A. M., Ashford, D. L., Templeton, J. L. & Meyer, T. J. (2013). Inorg. Chem. 52, 12492–12501. [DOI] [PubMed]
  25. Ortiz, J. H. M., Vega, N., Comedi, D., Tirado, M., Romero, I., Fontrodona, X., Parella, T., Vieyra, F. E. M., Borsarelli, C. D. & Katz, N. E. (2013). Inorg. Chem. 52, 4950–4962. [DOI] [PubMed]
  26. Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327–6336.
  27. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  28. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  29. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  30. Song, N., Concepcion, J. J., Binstead, R. A., Rudd, J. A., Vannucci, A. K., Dares, C. J., Coggins, M. K. & Meyer, T. J. (2015). Proc. Natl Acad. Sci. USA, 112, 4935–4940. [DOI] [PMC free article] [PubMed]
  31. Sonogashira, K. (2002). J. Organomet. Chem. 653, 46–49.
  32. Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.
  33. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  34. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  35. Suzuki, A. (1999). J. Organomet. Chem. 576, 147–168.
  36. Wang, W., Baba, A., Schmehl, R. H. & Mague, J. T. (1996). Acta Cryst. C52, 658–660.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, II, III, I. DOI: 10.1107/S2056989017004662/zs2378sup1.cif

e-73-00610-sup1.cif (760.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004662/zs2378Isup2.hkl

e-73-00610-Isup2.hkl (281.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017004662/zs2378IIsup3.hkl

e-73-00610-IIsup3.hkl (106.1KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017004662/zs2378IIIsup4.hkl

e-73-00610-IIIsup4.hkl (132.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378Isup5.cml

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989017004662/zs2378IIIsup7.cml

CCDC references: 1540011, 1540010, 1540009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES