Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 31;73(Pt 4):623–626. doi: 10.1107/S2056989017004819

Crystal structure and Hirshfeld surface analysis of 1-(4-bromo­phen­yl)-2-{[5-(pyridin-3-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}ethan-1-one

Huma Bano a, Shafqat Hussain b, Khalid M Khan a, Shahnaz Perveen c, Sammer Yousuf d,*
PMCID: PMC5382636  PMID: 28435735

In the crystal, the mol­ecules are linked into [100] chains by way of C—H⋯O, C—H⋯N, C—H⋯S hydrogen bonds. The Hirshfeld surface analysis indicates that the most important contributions to the packing are H⋯H (19.5%), N⋯H (17.3%), C⋯H (15.5%), Br⋯H (11.7%), and O⋯H (11.0%) inter­actions.

Keywords: oxadizole, bromo­phen­yl, X-ray structure, Hirshfeld surface analysis, crystal structure

Abstract

In the title compound, C15H10BrN3O2S, the dihedral angles between the 1,3,4-oxa­diazole ring and the 3-pyridinyl and bromo­benzene rings are 12.17 (15) and 18.74 (15)°, respectively. In the crystal, the mol­ecules are linked into [100] chains by way of C—H⋯O, C—H⋯N, C—H⋯S hydrogen bonds. The Hirshfeld surface analysis indicates that the most important contributions to the packing are H⋯H (19.5%), N⋯H (17.3%), C⋯H (15.5%), Br⋯H (11.7%), and O⋯H (11.0%) inter­actions.

Chemical context  

Substituted 1,3,4-oxa­diazo­les exhibit numerous biological activities such as anti­bacterial and anti­fungal (Prakash et al., 2010, Chandrakantha et al., 2010), anti­cancer (Abu-Zaied et al., 2011), anti-inflammatory, analgesic (Husain et al., 2009, Omar et al., 1996), anti­convulsant and neurotoxic activities (Rajak et al., 2010, Zarghi et al., 2005). Chemical compounds having a 1,3,4-oxa­diazole moiety are also important contrib­utors towards the synthesis of biologically active heterocyclic compounds having anti­bacterial activity against resistant strains (Bharti et al., 2010). As part of our studies in this area, we now describe the synthesis and structure of the title compound (I), a product of the condensation reaction between alcoholic solutions of 5-(3-pyrid­yl)-1,3,4-oxa­diazole-2-thiol and 2,4-di­bromo­aceto­phenone in the presence triethyl amine (Kashtoh et al., 2014).graphic file with name e-73-00623-scheme1.jpg

Structural commentary  

The structure of (I) (Fig. 1) is composed of three near-planar aromatic rings [bromo­phenyl (A), 3-pyridinyl (B) and 1,3,4-oxa­diazol (C)]. The inter-ring dihedral angles are A/B = 6.93 (15), A/C = 18.74 (15) and B/C = 12.17 (15)°. The C7—C8—S2—C9 torsion angle of 172.56 (17)° indicates approximate coplanarity of these atoms. Otherwise, geometrical data for (I) are similar to those found in structurally related compounds (Xia et al., 2011; Xu et al., 2005).

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Hydrogen bonding and Hirshfeld surface analysis  

The packing of (I) is consolidated by C1—H1B⋯O1, C1—H2B⋯S2 and C4—H4A⋯N2 hydrogen bonds, which form chains running along a-axis direction (Fig. 2, Table 1). The Hirshfeld surface analysis (Hirshfeld, 1977) of the crystal structure indicates that the contribution of the H⋯H inter­molecular inter­actions to the crystal packing amounts to 19.5%, N⋯H = 17.3%, Br⋯H = 11.7% and O⋯H = 11.0%. Minor inter­molecular contacts for the cohesion of the structure are: C⋯O = 4.7%, C⋯C = 3.6% and others (Br⋯C, C⋯S, C⋯N, Br⋯S, N⋯N, Br⋯N, O⋯N)= 10.4%. These contacts are represented by conventional mapping of d norm on the mol­ecular Hirshfeld surface, as shown in Fig. 3. The H⋯H contribution to the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with red dots (Wolff et al., 2012). The d e (y axis) and d i (x axis) values are the closest external and inter­nal distances (Å) from given points on the Hirshfeld surface (Fig. 4).

Figure 2.

Figure 2

The crystal packing of the title compound (I). Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.93 2.42 3.260 (3) 150
C2—H2B⋯S2i 0.93 2.86 3.716 (3) 153
C4—H4A⋯N2ii 0.93 2.58 3.372 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

d norm mapped on the Hirshfeld surface illustrating the inter­molecular contacts of the title compound. Dotted lines indicate hydrogen bonds.

Figure 4.

Figure 4

Fingerprint plots of the title compound, for (a) all, (b) H⋯H, (c) C⋯H, (d) N⋯H, (e) O⋯H and (f) S⋯H contacts. The outline of the full fingerprint plot is shown in grey. d i is the closet inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact.

Comparison with reported literature  

A database search disclosed a long list of compounds containing the 1,3,4-oxa­diazole moiety; however, only two examples of sulfanyl­ethanone-substituted 1,3,4-oxa­diazole derivatives were found, viz. 1,3-bis{[5-(pyridin-2-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}propan-2-one (II) (Xia et al., 2011) and 2-{5-[(1H-1,2,4-triazol-1-yl)-meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (III) (Xu et al., 2005). H⋯N inter­actions were found to be the most relevant inter­molecular inter­actions to form hydrogen bonds with neighboring mol­ecules. Therefore, D—H⋯N inter­actions were considered in a comparison with reported structures. In the crystal of (II), the mol­ecules are linked into a three-dimensional network via weak C—H⋯N hydrogen bonds (H⋯N distances = 2.51 and 2.54 Å) In (III), the C—H⋯N hydrogen bonds are found to be slightly weaker in comparison with the first structure (H⋯N distances = 2.41 Å). The change in substituents also changes the packing pattern towards zigzag chains extending along the b-axis direction. In addition, both (II) and (III) feature aromatic π–π stacking inter­actions, which are not observed in (I).

Synthesis and crystallization  

5-(3-Pyrid­yl)-1,3,4-oxa­diazole-2-thiol (179 mg, 1 mmol) and triethyl amine (0.1 ml) were added in ethanol (10 ml) and stirred for 10 min in a round-bottomed flask. After 10 min, to the reaction mixture was slowly added 2 4-dibromaceto­phenone (278 mg, 1 mmol). The mixture was refluxed until complete consumption of starting materials, the progress of reaction being monitored by TLC. After 2 h, the precipitate that had formed was separated, washed with ethanol and recrystallized from methanol solution to afford colourless blocks (346 mg, 92% yield).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with C—H = 0.93 Å (CH) or 0.97 Å (CH2) and constrained to ride on their parent atoms with U iso(H)= 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H10BrN3O2S
M r 376.23
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 273
a, b, c (Å) 11.9144 (16), 8.3755 (12), 30.382 (4)
V3) 3031.8 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.86
Crystal size (mm) 0.47 × 0.39 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000)
T min, T max 0.347, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16806, 2765, 2106
R int 0.038
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.114, 1.13
No. of reflections 2765
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.25

Computer programs: SMART and SAINT (Bruker, 2000), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017004819/hb7660sup1.cif

e-73-00623-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004819/hb7660Isup2.hkl

e-73-00623-Isup2.hkl (135.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004819/hb7660Isup3.cml

CCDC reference: 1540579

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the financial support of Higher Education Commission (HEC) Pakistan through research projects No. 20–1910 and 20–2830.

supplementary crystallographic information

Crystal data

C15H10BrN3O2S Dx = 1.648 Mg m3
Mr = 376.23 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3887 reflections
a = 11.9144 (16) Å θ = 2.7–22.9°
b = 8.3755 (12) Å µ = 2.86 mm1
c = 30.382 (4) Å T = 273 K
V = 3031.8 (7) Å3 Block, colorless
Z = 8 0.47 × 0.39 × 0.11 mm
F(000) = 1504

Data collection

Bruker SMART APEX CCD diffractometer 2765 independent reflections
Radiation source: fine-focus sealed tube 2106 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scan θmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −14→13
Tmin = 0.347, Tmax = 0.746 k = −10→10
16806 measured reflections l = −36→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.238P] where P = (Fo2 + 2Fc2)/3
2765 reflections (Δ/σ)max = 0.002
199 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.32966 (4) 1.17413 (5) 0.651655 (12) 0.0855 (2)
S2 0.48889 (6) 0.57198 (9) 0.42780 (3) 0.0573 (2)
O1 0.58756 (16) 0.7313 (2) 0.49352 (7) 0.0627 (6)
O2 0.42221 (15) 0.3878 (2) 0.36429 (6) 0.0519 (5)
N1 0.2823 (2) 0.4393 (3) 0.40960 (8) 0.0593 (6)
N2 0.2436 (2) 0.3373 (3) 0.37529 (9) 0.0632 (7)
N3 0.4463 (3) 0.0865 (4) 0.25578 (10) 0.0847 (9)
C1 0.3327 (2) 0.8827 (4) 0.54232 (11) 0.0561 (7)
H1B 0.2798 0.8391 0.5233 0.067*
C2 0.2986 (3) 0.9787 (4) 0.57656 (11) 0.0642 (8)
H2B 0.2227 1.0005 0.5806 0.077*
C3 0.3762 (3) 1.0418 (3) 0.60463 (9) 0.0561 (7)
C4 0.4894 (2) 1.0117 (3) 0.59921 (10) 0.0572 (8)
H4A 0.5416 1.0550 0.6186 0.069*
C5 0.5238 (2) 0.9178 (3) 0.56513 (10) 0.0528 (7)
H5A 0.5999 0.8979 0.5612 0.063*
C6 0.4458 (2) 0.8510 (3) 0.53610 (9) 0.0450 (6)
C7 0.4875 (2) 0.7497 (3) 0.49968 (9) 0.0468 (6)
C8 0.4052 (2) 0.6676 (3) 0.46970 (10) 0.0495 (7)
H8A 0.3543 0.7445 0.4566 0.059*
H8B 0.3617 0.5892 0.4858 0.059*
C9 0.3863 (2) 0.4642 (3) 0.40109 (9) 0.0501 (7)
C10 0.3272 (2) 0.3106 (3) 0.35029 (10) 0.0514 (7)
C11 0.3335 (2) 0.2139 (3) 0.31076 (11) 0.0541 (7)
C12 0.2370 (3) 0.1585 (3) 0.29051 (11) 0.0621 (8)
H12A 0.1665 0.1820 0.3020 0.075*
C13 0.2476 (3) 0.0681 (4) 0.25307 (11) 0.0717 (10)
H13A 0.1842 0.0287 0.2389 0.086*
C14 0.3520 (3) 0.0365 (4) 0.23684 (12) 0.0779 (10)
H14A 0.3575 −0.0232 0.2111 0.093*
C15 0.4355 (3) 0.1747 (4) 0.29175 (12) 0.0702 (9)
H15A 0.5005 0.2127 0.3051 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1083 (4) 0.0886 (3) 0.0597 (3) −0.00727 (19) 0.02208 (18) −0.00144 (17)
S2 0.0409 (4) 0.0600 (4) 0.0711 (5) −0.0033 (3) 0.0054 (3) −0.0031 (4)
O1 0.0357 (14) 0.0716 (13) 0.0808 (15) 0.0013 (10) −0.0025 (10) 0.0025 (11)
O2 0.0407 (11) 0.0572 (10) 0.0578 (12) −0.0024 (9) 0.0065 (9) 0.0010 (9)
N1 0.0405 (14) 0.0658 (15) 0.0716 (17) −0.0039 (11) 0.0083 (12) −0.0052 (12)
N2 0.0454 (16) 0.0682 (16) 0.0759 (18) −0.0064 (11) 0.0074 (14) −0.0062 (13)
N3 0.075 (2) 0.103 (2) 0.076 (2) 0.0034 (17) 0.0039 (16) −0.0197 (17)
C1 0.0354 (17) 0.0653 (17) 0.068 (2) −0.0096 (13) −0.0067 (13) 0.0019 (15)
C2 0.0432 (18) 0.075 (2) 0.074 (2) −0.0041 (15) 0.0102 (15) 0.0014 (17)
C3 0.059 (2) 0.0566 (16) 0.0527 (17) −0.0062 (14) 0.0036 (14) 0.0095 (13)
C4 0.055 (2) 0.0570 (17) 0.0592 (19) −0.0102 (13) −0.0151 (14) 0.0116 (14)
C5 0.0409 (16) 0.0536 (16) 0.0638 (18) −0.0013 (12) −0.0102 (13) 0.0114 (14)
C6 0.0343 (15) 0.0450 (13) 0.0558 (16) −0.0031 (11) −0.0059 (12) 0.0128 (12)
C7 0.0350 (18) 0.0455 (14) 0.0600 (17) −0.0014 (11) −0.0046 (12) 0.0130 (12)
C8 0.0381 (16) 0.0504 (15) 0.0601 (17) −0.0002 (11) 0.0001 (12) 0.0039 (12)
C9 0.0451 (18) 0.0450 (14) 0.0600 (18) 0.0018 (12) 0.0039 (13) 0.0057 (13)
C10 0.0409 (18) 0.0515 (16) 0.0619 (19) −0.0025 (12) 0.0015 (13) 0.0096 (13)
C11 0.053 (2) 0.0515 (15) 0.0580 (18) 0.0001 (12) −0.0009 (13) 0.0075 (13)
C12 0.053 (2) 0.0605 (18) 0.073 (2) −0.0053 (14) −0.0073 (16) 0.0071 (15)
C13 0.074 (3) 0.069 (2) 0.072 (2) −0.0099 (18) −0.0188 (18) −0.0001 (17)
C14 0.085 (3) 0.079 (2) 0.070 (2) 0.002 (2) −0.010 (2) −0.0093 (18)
C15 0.055 (2) 0.087 (2) 0.069 (2) −0.0046 (16) 0.0017 (16) −0.0092 (17)

Geometric parameters (Å, º)

Br1—C3 1.891 (3) C4—C5 1.363 (4)
S2—C9 1.722 (3) C4—H4A 0.9300
S2—C8 1.804 (3) C5—C6 1.398 (4)
O1—C7 1.217 (3) C5—H5A 0.9300
O2—C9 1.357 (3) C6—C7 1.480 (4)
O2—C10 1.372 (3) C7—C8 1.504 (4)
N1—C9 1.283 (4) C8—H8A 0.9700
N1—N2 1.424 (3) C8—H8B 0.9700
N2—C10 1.272 (4) C10—C11 1.451 (4)
N3—C15 1.326 (4) C11—C12 1.384 (4)
N3—C14 1.330 (5) C11—C15 1.385 (4)
C1—C2 1.376 (4) C12—C13 1.372 (4)
C1—C6 1.387 (4) C12—H12A 0.9300
C1—H1B 0.9300 C13—C14 1.364 (4)
C2—C3 1.365 (4) C13—H13A 0.9300
C2—H2B 0.9300 C14—H14A 0.9300
C3—C4 1.382 (4) C15—H15A 0.9300
C9—S2—C8 99.97 (13) C7—C8—H8A 110.6
C9—O2—C10 102.6 (2) S2—C8—H8A 110.6
C9—N1—N2 105.2 (2) C7—C8—H8B 110.6
C10—N2—N1 106.8 (2) S2—C8—H8B 110.6
C15—N3—C14 116.7 (3) H8A—C8—H8B 108.7
C2—C1—C6 120.1 (3) N1—C9—O2 113.2 (2)
C2—C1—H1B 119.9 N1—C9—S2 132.5 (2)
C6—C1—H1B 119.9 O2—C9—S2 114.32 (19)
C3—C2—C1 119.9 (3) N2—C10—O2 112.2 (3)
C3—C2—H2B 120.0 N2—C10—C11 129.3 (3)
C1—C2—H2B 120.0 O2—C10—C11 118.5 (2)
C2—C3—C4 121.1 (3) C12—C11—C15 117.7 (3)
C2—C3—Br1 120.0 (2) C12—C11—C10 120.8 (3)
C4—C3—Br1 118.9 (2) C15—C11—C10 121.5 (3)
C5—C4—C3 119.2 (3) C13—C12—C11 118.5 (3)
C5—C4—H4A 120.4 C13—C12—H12A 120.8
C3—C4—H4A 120.4 C11—C12—H12A 120.8
C4—C5—C6 120.7 (3) C14—C13—C12 119.4 (3)
C4—C5—H5A 119.6 C14—C13—H13A 120.3
C6—C5—H5A 119.6 C12—C13—H13A 120.3
C1—C6—C5 118.9 (3) N3—C14—C13 123.6 (4)
C1—C6—C7 122.5 (3) N3—C14—H14A 118.2
C5—C6—C7 118.6 (2) C13—C14—H14A 118.2
O1—C7—C6 121.1 (2) N3—C15—C11 124.1 (3)
O1—C7—C8 119.2 (3) N3—C15—H15A 117.9
C6—C7—C8 119.7 (2) C11—C15—H15A 117.9
C7—C8—S2 105.69 (19)
C9—N1—N2—C10 0.6 (3) C10—O2—C9—N1 0.1 (3)
C6—C1—C2—C3 −0.5 (5) C10—O2—C9—S2 178.86 (18)
C1—C2—C3—C4 0.3 (5) C8—S2—C9—N1 −7.1 (3)
C1—C2—C3—Br1 179.8 (2) C8—S2—C9—O2 174.34 (19)
C2—C3—C4—C5 0.2 (4) N1—N2—C10—O2 −0.6 (3)
Br1—C3—C4—C5 −179.3 (2) N1—N2—C10—C11 179.7 (3)
C3—C4—C5—C6 −0.6 (4) C9—O2—C10—N2 0.3 (3)
C2—C1—C6—C5 0.1 (4) C9—O2—C10—C11 −179.9 (2)
C2—C1—C6—C7 −179.5 (3) N2—C10—C11—C12 12.1 (5)
C4—C5—C6—C1 0.5 (4) O2—C10—C11—C12 −167.6 (2)
C4—C5—C6—C7 −179.9 (2) N2—C10—C11—C15 −168.4 (3)
C1—C6—C7—O1 175.7 (3) O2—C10—C11—C15 11.9 (4)
C5—C6—C7—O1 −3.8 (4) C15—C11—C12—C13 0.2 (4)
C1—C6—C7—C8 −4.4 (4) C10—C11—C12—C13 179.7 (3)
C5—C6—C7—C8 176.0 (2) C11—C12—C13—C14 −0.4 (5)
O1—C7—C8—S2 −4.8 (3) C15—N3—C14—C13 −1.6 (6)
C6—C7—C8—S2 175.32 (19) C12—C13—C14—N3 1.2 (6)
C9—S2—C8—C7 172.56 (17) C14—N3—C15—C11 1.4 (5)
N2—N1—C9—O2 −0.4 (3) C12—C11—C15—N3 −0.7 (5)
N2—N1—C9—S2 −178.9 (2) C10—C11—C15—N3 179.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O1i 0.93 2.42 3.260 (3) 150
C2—H2B···S2i 0.93 2.86 3.716 (3) 153
C4—H4A···N2ii 0.93 2.58 3.372 (4) 144

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1.

References

  1. Abu-Zaied, M., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235. [DOI] [PubMed]
  2. Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660. [DOI] [PubMed]
  3. Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210. [DOI] [PubMed]
  5. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  6. Husain, A., Ahmad, A., Alam, M. M., Ajmal, M. & Ahuja, P. (2009). Eur. J. Med. Chem. 44, 3798–3804. [DOI] [PubMed]
  7. Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A. J., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454–5465. [DOI] [PubMed]
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825. [DOI] [PubMed]
  10. Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257. [DOI] [PubMed]
  11. Rajak, H., Deshmukh, R., Veerasamy, R., Sharma, A. K., Mishra, P. & Kharya, M. D. (2010). Bioorg. Med. Chem. Lett. 20, 4168–4172. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
  15. Xia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413. [DOI] [PMC free article] [PubMed]
  16. Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375–o3376.
  17. Zarghi, A., Tabatabai, S. A., Faizi, M., Ahadian, A., Navabi, P., Zanganeh, V. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1863–1865. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017004819/hb7660sup1.cif

e-73-00623-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004819/hb7660Isup2.hkl

e-73-00623-Isup2.hkl (135.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004819/hb7660Isup3.cml

CCDC reference: 1540579

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES