Skip to main content
Frontiers in Medicine logoLink to Frontiers in Medicine
. 2017 Apr 10;4:39. doi: 10.3389/fmed.2017.00039

Imprecision in the Era of Precision Medicine in Non-Small Cell Lung Cancer

Raghav Sundar 1,2, Maxime Chénard-Poirier 1,3, Dearbhaile Catherine Collins 1,3, Timothy A Yap 1,3,*
PMCID: PMC5385461  PMID: 28443282

Abstract

Over the past decade, major advances have been made in the management of advanced non-small cell lung cancer (NSCLC). There has been a particular focus on the identification and targeting of putative driver aberrations, which has propelled NSCLC to the forefront of precision medicine. Several novel molecularly targeted agents have now achieved regulatory approval, while many others are currently in late-phase clinical trial testing. These antitumor therapies have significantly impacted the clinical outcomes of advanced NSCLC and provided patients with much hope for the future. Despite this, multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in NSCLC and the impact of precision medicine in this disease. We also discuss the areas of “imprecision” that still exist in NSCLC and the modern hypothesis-testing studies being conducted to address these key challenges.

Keywords: precision medicine, lung cancer, targeted therapy, imprecision, clinical trials

Introduction

The management of advanced lung cancer has evolved dramatically over the past two decades. Back in the early 1990s, little was done to distinguish between the different histological subgroups of non-small cell lung cancer (NSCLC), with most trials focused on intensifying chemotherapy regimens and establishing the most effective treatments for advanced NSCLC (1), irrespective of histological subtype (24). Subsequently, subgroup analysis for a large randomized trial revealed critical differences in survival between patients with squamous and non-squamous histology treated with different chemotherapeutic agents (pemetrexed versus gemcitabine, in combination with cisplatin) (5). The development of tyrosine kinase inhibitors (TKIs) to epidermal growth factor receptor (EGFR) mutated NSCLC heralded the era of precision medicine in lung cancer. This prompted a paradigm shift toward the search for molecularly targeted agents against other putative driver aberrations in NSCLC and has led to the development of novel therapeutics matched against specific actionable aberrations, such as crizotinib (Pfizer) against ALK and ROS1 aberrations (6, 7) (Figure 1).

Figure 1.

Figure 1

Oncogenic pathways currently being targeted in non-small cell lung cancer.

Despite these selected successes in NSCLC and the initial promise of individualizing treatments for all patients, the management of this disease for most remains generally imprecise. Current efforts are now focused on the matching of multiple actionable drivers with targeted agents in specific disease subgroups through large basket and umbrella adaptive trials. This article describes the current state of play in the development of molecularly targeted therapies for NSCLC and addresses the successes, pitfalls, and opportunities of precision medicine in this disease.

Food and Drug Administration (FDA)-Approved Molecularly Targeted Agents

EGFR Mutations

The initial rationale for targeting EGFR in NSCLC was based on the overexpression of EGFR in NSCLC (8) and its association with worse survival (9). Initial clinical trials (IDEAL 1 and 2) involving the EGFR TKI gefitinib (AstraZeneca) were promising (10, 11) and led to accelerated FDA approval (12). However, after the failure of the drug in a large randomized phase III study (ISEL trial) (13), FDA approval for gefitinib was withdrawn. Importantly, a subgroup of patients who were non-smokers and/or of Asian descent appeared to benefit from the drug. During the same period, another EGFR TKI, erlotinib (Roche), showed a survival benefit in an unselected population of patients with refractory NSCLC (BR.21 trial) (14), which subsequently led to FDA approval. Much time and effort was spent on studying EGFR alterations, using immunohistochemistry (IHC), gene amplification, and gene-copy number, with no clear correlation with efficacy. Sequencing of receptor tyrosine kinase genes revealed somatic mutations in EGFR and only tumors with these mutations responded to gefitinib, while wild-type tumors did not respond (15). It took another 5 years, before the landmark IPASS trial (16) and several other pivotal phase III randomized studies (17, 18) demonstrated the importance of EGFR mutations as a critical driver in NSCLC, and established EGFR TKIs as the standard-of-care first-line therapy for this subgroup of patients. Gefitinib had FDA approval reinstated for first line, after a phase IV study done in the Caucasian EGFR-mutated population demonstrated similar responses and survival to randomized studies (19).

Afatinib (Boehringer Ingelheim), a pan-HER family small-molecule inhibitor, binds irreversibly to EGFR and is considered a second-generation EGFR TKI. Phase III trials in Western population and the Asian populations (Lux-Lung 3 and Lux-Lung 6) demonstrated a progression-free survival (PFS) benefit over platinum-based doublet therapy (20, 21). While both trials did not demonstrate an overall survival (OS) benefit for afatinib over chemotherapy, a combined analysis of both trials revealed a statistically significant OS benefit for patients with exon 19 mutations in EGFR (22). Afatinib has also been combined with cetuximab (Merck), a chimeric monoclonal anti-EGFR antibody and has demonstrated promising clinical activity in EGFR-mutant NSCLC, albeit at the cost of high rates of diarrhea and skin rash (23). Erlotinib and gefitinib have been compared head-to-head in two randomized phase III studies and revealed no significant differences in response rates and survival, suggesting equivalence between the two drugs (24, 25).

Although response to initial therapy with EGFR TKI is common, resistance to therapy is invariable and is often due to secondary mutations in EGFR and amplification of MET. The most common secondary mutation in EGFR is the substitution of methionine for threonine (T790M) (26). Osimertinib (Astra Zeneca), a third-generation EGFR TKI with activity against T790M was FDA approved for use in patients with NSCLC EGFR mutations, who have progressed on prior EGFR therapy and harbor EGFR T790M mutations. In a phase III study, osimertinib demonstrated a PFS benefit of 5.7 months over platinum doublet therapy (27). The role of afatinib in inhibiting EGFR T790M-mutant NSCLC still remains unclear in the clinic and is probably now academic given the regulatory approval of osimertinib.

ALK Translocations

Inversion of the short arm of chromosome 2 leads to the joining of exons 1 to 13 of EML4 and exons 20 to 29 of ALK, resulting in the EML4–ALK chimeric protein, which is known to occur in approximately 4–7% of NSCLC (28, 29). ALK translocations are usually mutually exclusive to EGFR and KRAS mutations (30). Crizotinib (Pfizer) was initially developed as a MET inhibitor (31), but was also found to be a potent inhibitor of ALK signal transduction (32). Compared to EGFR TKIs, ALK-inhibitor trials have been conducted primarily in biomarker-selected studies, involving patients with ALK-translocated NSCLC. These early to late clinical trials have demonstrated clear survival benefit and have since obtained regulatory approval for routine clinical use. Crizotinib demonstrated a PFS benefit versus chemotherapy (docetaxel or pemetrexed) in patients previously treated with a platinum doublet chemotherapy (6). Benefit in a chemotherapy-naïve population was then subsequently proven in a trial of crizotinib versus platinum/pemetrexed (33). OS benefit was not demonstrated in either trial, likely due to a cross-over effect. Despite initial antitumor responses, resistance to crizotinib invariably develops, commonly in the gatekeeper mutation L1196M, or G1269A and G1202R (34), providing the rationale for the development of second-generation ALK-inhibitors.

Ceritinib (Novartis) is 20 times more potent than crizotinib and was developed in the clinic in a small, biomarker-driven phase I study of ALK-translocated NSCLC, in which 66% of patients were previously treated with crizotinib, demonstrating excellent response rates of 58% and a PFS of 7 months (35), leading to FDA approval of the drug after a phase I study (a first in the modern oncology era). The efficacy of ceritinib was proven further in a phase II study (36), and phase III studies are currently ongoing (NCT01828112, NCT01828099). It should be noted that while ceritinib has shown activity against the L1196M and G1269A resistance mutations, it is ineffective against G1202R mutations (35). Brain metastases are common in NSCLC, and are often a “sanctuary site” of disease progression for patients on TKI therapy. Crizotinib has only modest cerebrospinal fluid penetration, while another second-generation ALK-inhibitor, alectinib (Genentech) has comparatively much improved activity against brain metastases (37). Two phase II studies in crizotinib-resistant ALK-translocated NSCLC have demonstrated significant response and disease control (38, 39). Both were single-arm studies that included ALK-translocated NSCLC that that failed crizotinib therapy and demonstrated response rates of 50%, leading to FDA approval for alectinib. Preliminary data were presented for a first-line Japanese study (J-ALEX) comparing alectinib with crizotinib (40) and suggested an improved PFS for alectinib over crizotinib, with better tolerance. Final data from the J-ALEX study as well as the ALEX (global) study are awaited.

Lorlatinib (Pfizer) was developed to target the G1202R-mutated population, which is resistant to crizotinib, ceritinib, and alectinib. It has demonstrated antitumor activity in patients who have progressed on two or more prior ALK-inhibitors (41). Other ALK-inhibitors that are currently in clinical trials include brigatinib (Ariad), which also targets G1202R mutations (42) and ensartinib (X-396; Xcovery), a potent second-generation inhibitor with activity against L1196M and C1156Y mutations (43). Other resistance mechanisms to ALK-inhibitors include bypass signaling through HER3 and insulin-like growth factor-1 receptor pathways, and these will probably require combination strategies to overcome such complex networks of signaling resistance (44).

ROS1 Translocations

ROS1 is an insulin receptor family tyrosine kinase with translocation aberrations most commonly with CD74, and occurs in 1–2% of patients with NSCLC (45). Aberrant ROS1 kinase activity leads to downstream signaling of the PI3K and MAPK pathways (46). As ROS1 and ALK tyrosine kinase domains have a high degree of homology, crizotinib has been shown to also inhibit ROS1 effectively (45). Clinical activity in this subgroup of patients with crizotinib included response rates of over 70% and a median duration of response of 18 months (7, 47), leading to FDA approval of crizotinib in this subgroup of patients. Ceritinib appears to show clinical activity in ROS1-rearranged NSCLC upon progression on crizotinib (48).

Targeted Therapy in NSCLC Not Selected for Driver Mutations

Antiangiogenic Agents

High levels of vascular endothelial growth factor expression in NSCLC have been associated with a poorer prognosis, providing rationale for the use of antiangiogenic agents in this population. Several antiangiogenic agents have proven to be effective in the management of advanced NSCLC. Bevacizumab (Roche) was the first drug to show an OS benefit in combination with carboplatin and paclitaxel (E4599 trial) (49) and has been FDA approved for use in lung adenocarcinoma. However, there have been other negative phase III trials with the addition of bevacizumab to chemotherapy in the first line (50). Despite FDA approval, other drug approval bodies such as the National Institute for Clinical Excellence in the UK have not approved the use of this regimen (51). Ramucirumab (Lilly Oncology), a second-generation recombinant human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), was shown to improve OS when combined with docetaxel in the second-line setting in NSCLC (52) and is FDA approved for this indication. Nintedanib (Boehringer Ingelheim), a multikinase inhibitor against VEGFR, PDGFR, and FGFR showed a survival benefit in subset analysis in patients with lung adenocarcinoma (53) and is now approved for routine use in the United Kingdom. Despite much investment spent on the development of these novel antiangiogenic agents in NSCLC, including several others currently in clinical trials, including aflibercept (Sanofi) and bavituximab (Peregerine) (54), the discovery of predictive biomarkers of response for these inhibitors remains a challenge. Several putative predictive biomarkers, including circulating VEGF-A isoform, neurophilin-1 expression, and VEGFR-1 expression, have failed to predict the antitumor effects of bevacizumab in lung cancer and other tumor types (55, 56).

Anti-EGFR Antibodies

There have been mixed results with clinical trials assessing anti-EGFR antibodies in advanced NSCLC. Cetuximab demonstrated an OS benefit of 11.3 months when combined with cisplatin and vinorelbine chemotherapy versus 10.1 months with cisplatin and vinorelbine (HR 0.87, p = 0.044) in the first-line treatment of NSCLC in the FLEX trial (57). However, there was no PFS benefit, with both arms reporting a PFS of 4.8 months. This study was followed by a negative phase III study (BMS 099 trial) (58), when cetuximab was combined with a treatment regimen of either carboplatin and paclitaxel chemotherapy or docetaxel. Similar to the FLEX study, there was no PFS benefit observed in this trial. The OS benefit between the two arms was 9.7 versus 8.4 months, which was not statistically significant. Interestingly, the magnitude of benefit between the FLEX and BMS 099 studies was similar at around 1.2 months. Based on these data, both the FDA and the European Medicines Agency rejected the use of cetuximab in the first-line setting for metastatic NSCLC in combination with platinum-based chemotherapy, based on the lack of PFS benefit and marginal improvement in OS. Apart from cetuximab, the second-generation anti-EGFR antibody necitimumab (Lilly Oncology) has been assessed in combination with cisplatin and gemcitabine in squamous NSCLC in the SQUIRE study (59). The necitimumab combination extended OS modestly from 9.9 months to 11.5 months versus cisplatin and gemcitabine chemotherapy and has since been approved by the FDA for use in first-line squamous NSCLC.

Promising Targets in NSCLC

MET Aberrations

MET amplification has gained much interest as a putative mechanism of resistance to EGFR TKI therapy. However, MET overexpression and amplification may also occur de novo in 50% (60) and 5% (61) of NSCLC, respectively. Tivantinib (ArQule), a small-molecule TKI, was studied in a large randomized phase III study (62) in combination with erlotinib, in patients with advanced NSCLC who had failed 1–2 lines of standard therapy. There was no improvement in OS (8.5 versus 7.8 m, p = 0.81), although PFS improved from 1.9 to 3.6 m (p < 0.01). Tivantinib was later shown to have cytotoxic activity independent of MET inhibition through microtubule disruption, similar to vincristine (63, 64). Onartuzumab (Roche), a monoclonal antibody targeting MET showed promising results in a phase II study (65), but failed to show any benefit in a large randomized phase III study when combined with erlotinib, with a median PFS of 2.7 versus 2.6 m on both arms of the study (66, 67). This study highlighted the challenges of selecting patients with truly MET-addicted NSCLC. At current time, MET overexpression based on IHC does not appear to be sufficiently robust as a predictive biomarker of response (68). In contrast, the recent impressive responses observed with crizotinib and other MET inhibitors in patients with MET exon 14 skipping alterations, has renewed interest in the development of MET inhibitors in NSCLC (69, 70). MET exon 14 aberrations occur in approximately 3–4% of non-squamous NSCLC and are hypothesized to decrease MET degradation, transforming it into an oncogenic driver (69, 71). Capmatinib (INC280, Novartis), a small-molecule inhibitor of MET, has reported responses in a case-series in patients with MET exon 14 skipping mutations (69). MGCD265 (Glesatinib, Mirati Therapeutics), a small-molecule inhibitor of MET and Axl, is being investigated in NSCLC with genetic alterations in MET (72). Resistance to MET inhibition can occur through secondary mutations in the MET kinase domain, such as D1228N and Y1230C (73, 74). High MET amplification also appears to be a promising predictive biomarker of response to MET inhibitors, with early studies showing antitumor responses to crizotinib in this subgroup of patients (75). In order to optimize patient benefit and accelerate the path to drug approval, future trials should include molecular profiling designed to detect MET-driven NSCLC through MET amplification and exon 14 skipping alterations.

BRAF Mutations

These occur in about 2% of NSCLC, and like KRAS mutations, are more common in smokers (76). Similar to melanoma, the most common mutation is V600E in exon 15. BRAF inhibitors, such as vemurafenib (Genentech), which are approved for use in melanoma, have shown to have preliminary clinical activity in NSCLC as well (77). Of 20 patients treated, the objective response rate was 42%, median PFS was 7.3 months and 12-month OS was 66%.

HER2 Mutations

Compared to the more familiar HER2-amplification in breast and gastric cancer, HER2 mutations occur in about 1–2% of NSCLC, most commonly in exon 20. Trastuzumab (Roche), which is standard-of-care for HER2-amplified breast and gastric cancers, has failed to robustly demonstrate antitumor activity in HER2-mutated NSCLC (78). However, afatinib, an irreversible small-molecule TKI that inhibits HER1, 2, and 4, has been shown to have clinical activity in this subgroup of patients (79). Neratinib (Puma), a pan-HER inhibitor was evaluated in combination with temsirolimus in a phase I study, with two out of six HER2-mutated NSCLC demonstrating a partial response (80). A phase II trial evaluating neratinib in HER2-mutated NSCLC is currently ongoing (NCT1827267). Dacomitinib (Pfizer), also an irreversible pan-HER TKI, demonstrated an overall response of 12% in HER2-mutant NSCLC in a phase II study (81).

RET Translocation

RET translocation with genes KIF5B, CCDC6, and NCOA4 occurs in about 1% of adenocarcinoma NSCLC (82). Cabozantinib (Exelixis) a small-molecule inhibitor of RET, MET, AXL, and VEGFR2, has shown activity in RET-translocated NSCLC in a phase II trial (83). Case reports have also been reported of response to vandetanib (AstraZeneca) (84).

PI3K Pathway Aberrations

PIK3CA mutations have been described in 9% of squamous NSCLC (85) and are also postulated to occur as a resistance mechanism to EGFR inhibitors (86), while AKT mutations occur in about 5% of squamous NSCLC (87). In addition, PTEN loss occurs in approximately 20% of squamous NSCLC and 4% of lung adenocarcinoma (85). Several trials assessing mTOR, PI3K, and AKT inhibitors have been conducted to target this pathway in NSCLC. Unfortunately, most of these studies have been conducted in biomarker “unselected” populations, leading to negative results. Everolimus (Novartis), an inhibitor of mTORC1, had a response rate of 4.7%, with significant toxicities, including diarrhea (72%), rash (53%), and stomatitis (72%) (88). Another study combining everolimus with docetaxel in an unselected population had an ORR of 8%, which did not improve on the historical single agent response rates of docetaxel (89). Several novel TORC and PI3K inhibitors are currently in clinical trials, with early results already presented in abstract form. Buparlisib (Novartis) is a pan-PI3K inhibitor, which was assessed in a PIK3CA-activated [defined as PIK3CA mutation, PTEN mutation, or PTEN loss (less than 10% protein expression by IHC)] NSCLC population. The study reported a modest ORR of 3%, and a 12-week PFS of just 20%, leading to early termination of the study (90).

These negative findings have led to much discussion about whether such aberrations along the PI3K pathway are bona fide “driver” oncogenic mutations or simply “passenger” bystander mutations. However, AZD2014 (AstraZeneca), a dual TORC1 and TORC2 inhibitor, has reported early antitumor activity in patients with advanced squamous NSCLC, when combined with weekly paclitaxel, including those previously exposed to taxane chemotherapy (91). AZD5363, a potent catalytic inhibitor of all three isoforms of AKT (AKT1, 2, and 3), has demonstrated single agent activity in AKT E17K-mutated lung cancers, which occur in about 1% of NSCLC (92).

Targeting the PI3K pathway is more complex than inhibiting other pathways, probably because of the complex network of signaling pathways, including the disruption of negative feedback loops or development of signaling crosstalk with parallel resistance pathways.

FGFR1 Amplification

FGFR1 amplifications are seen almost exclusively in smokers and occur in about 25% of squamous NSCLC (93). BGJ398 (Novartis) is a pan-FGFR inhibitor and was tested in a phase I, biomarker-selected dose-escalation study of FGFR1-amplified squamous NSCLC, where only 12% achieved partial responses (94). AZD4547 (AstraZeneca), a FGFR1–3 inhibitor, was assessed in a biomarker-driven group of patients with squamous NSCLC with FGFR amplification. Again, only 7% of patients had partial responses (95). Several questions have been raised on the validity of FGFR amplification being chosen as the predictive biomarker for these drugs and if this is indeed a true oncogenic driver (96). Importantly, high-level clonal amplification of FGFR2 has been shown to have a differentially higher response to AZD4547 in gastric cancer (97), and this should now be assessed in lung cancer to allow for better patient selection in FGFR inhibitor trials.

KRAS Mutations

KRAS mutations comprise approximately 25% of NSCLC, especially in smokers (98). Drugging RAS has unfortunately largely failed to date (99) and efforts to target the pathway downstream of RAS has yielded only modest results. For example, in a trial of selumetinib (AstraZeneca) in combination with docetaxel, PFS was improved from 2.1 to 5.3 months, and a trend in OS improvement (9.4 versus 5.2 m) was observed (100). In another trial of selumetinib with erlotinib, the combination of the two drugs led to increased toxicity without any improvement in ORR and PFS (101). In addition, the MEK inhibitor trametinib (Novartis) did not show any benefit in PFS or ORR when compared to docetaxel in KRAS-mutated lung cancer (102). Chemotherapy remains the standard-of-care for first-line metastatic KRAS-mutated NSCLC. A novel RAF/MEK inhibitor, RO5126766, showed promise in a phase I expansion of KRAS-mutated NSCLC with preliminary results being recently presented, and mature results are awaited (103).

DDR2 Mutations

DDR2 mutations occur in approximately 4% of squamous cell NSCLC. DDR2 is a receptor tyrosine kinase that binds to collagen and promotes cellular proliferation. While the main target of dasatinib (Bristol-Myers Squibb) is BCR/ABL, it also inhibits DDR2 and appears to have early signals of antitumor activity in this subgroup of patients (104).

NTRK Translocation

NTRK translocation occurs in <1% of NSCLC and include rearrangements in NTRK1, NTRK2, and NTRK3. NTRK activation leads to downstream signaling through the MAPK and PI3K pathways. Entrectinib (RXDX-101) demonstrated a durable response in a patient with NTRK1 gene rearrangement (105) and trials investigating this drug are currently on going.

Modern Precision Medicine Trial Designs in NSCLC

One of the main issues to address in NSCLC is that many driver aberrations only constitute a small percentage of the entire NSCLC population (Figure 2). Traditional registration trial strategies involving randomized, placebo-controlled, double-blind phase III clinical trials are, therefore, not optimal approaches and may even be considered unethical in view of the placebo control arms. Technical issues also arise as the detection of the multiple driver mutations are performed on different platforms. For example, EGFR mutations are usually detected by real-time polymerase chain reaction, while ALK rearrangements are detected by IHC and/or fluorescent in situ hybridization. Currently, a large number of driver aberrations in NSCLC can be assessed using large multiplexed next-generation sequencing (NGS) platforms. These are now increasingly being incorporated into clinical trials and daily clinical practice (106). Such an approach involving multiple NGS platforms abrogates issues associated with screening patients for “low frequency” genetic aberrations, especially if they are directly linked to a master protocol adaptive clinical trial. Umbrella trials assess multiple pre-specified genetic aberrations using NGS or other platforms and are matched to targeted agents, usually involving specific tumor types. Basket trials involve patients with a single or family of genetic abnormalities and are matched to targeted therapies, regardless of tumor origin (Table 1).

Figure 2.

Figure 2

Relative frequency of genetic abnormalities in non-small cell lung cancer lung cancer. Note: some aberrations can occur concomitantly (not displayed in figure).

Table 1.

Modern precision medicine trials in NSCLC.

Trial name Precision medicine trial type Investigational agent and target if known Inclusion criteria Target recruitment (n) Sponsor/country NCT identifier
BATTLE-2
Biomarker-integrated targeted therapy study
Umbrella Phase II Group 1: erlotinib
Group 2: erlotinib + MK-2206
Group 3: AZD6244 + MK-2206
Group 4: sorafenib
Stage IIIB or IV NSCLC progressed on first-line treatment 334 MD Anderson Cancer Centre, USA NCT01248247

S1400 Lung-MAP
Lung cancer master protocol
Umbrella Phase II/III MEDI4736 (durvalumab): no active drug-biomarker option Recurrent advanced, stage IV squamous NSCLC 10,000 SWOG/NCI, USA NCT02154490
AZD4547: FGFR1, FGFR2, FGFR3
Erlotinib ± rilotumumab: HGF/c-MET
Nivolumab ± ipilimumab: no active drug-biomarker option
Palbociclib: CDK4/6, CCND1, 2, and 3
Taselisib: PI3KCA expression
All arms are randomized to biological agent or docetaxel

MATCH
Molecular analysis for therapy choice
Basket Phase II Afatinib: HER2; EGFR mut Solid tumors and lymphoma post progression on standard therapy 3,000 NCI, USA NCT02465060
AKT inhibitor AZD5363: Akt mut
Binimetinib: NRAS mut in codon 12, 13, or 61
Crizotinib: MET amp/exon 14 del; ALK trans; ROS1 trans/inv
Dabrafenib (+trametinib): BRAF V600
Dasatinib: DDR2 S768R, I638F, or L239R mut
Defactinib: NF2 inactivating mut
FGFR inhibitor AZD4547: FGFR1–3 amp, mut, or trans
Nivolumab: mismatch repair deficiency
Osimertinib (AZD9291): EGFR T790M
Palbociclib: CCND1, 2, or 3 amp + Rb expression by immunohistochemistry
PI3Kbeta inhibitor GSK2636771: PTEN mut, del, expression, loss
Sunitinib maleate: cKIT exon 9,11,13, or 14 mut
Taselisib: PTEN loss; PI3K mut or amp without RAS mut
Trametinib: BRAF V600 (with dabrafenib); BRAF fusion or non-V600; NF1 mut; GNAQ or GNA11 mut
Trastuzumab emtansine: HER2 amp
Vismodegib: SMO or PTCH1 mutation

MPACT
Molecular profiling-based assignment of cancer therapy
Basket Phase II Everolimus: PI3K pathway defect Advanced solid tumors 700 NCI, USA NCT01827384
MK-1775 (Wee1 inhibitor) + carboplatin: DNA pathway repair defects
Temozolomide + veliparib (ABT-888; PARP inhibitor): DNA repair pathway defects
Trametinib DMSO: Ras/Raf/Mek pathway mut

National lung matrix trial Umbrella Phase II AZD4547 (FGFR inhibitor) Stage IIIB or IV NSCLC 620 University of Birmingham, UK NCT02664935
AZD2014 (MTORC1/2 inhibitor)
AZD5363 (AKT inhibitor)
AZD9291 (EGFRm + T790M + inhibitor)
Crizotinib (ALK/MET/ROS1 inhibitor)
MEDI4736 (anti-PDL1)
Palbociclib (CDK4/6 inhibitor)
Selumetinib (MEK inhibitor) + doectaxel

TAPUR
Targeted agent and profiling utilization registry
Basket Phase II Axitinib: vascular endothelial growth factor receptor (VEGFR) mut, amp, overexpression Advanced solid tumors, multiple myeloma and B-cell non-Hodgkin lymphoma 1,030 ASCO, USA NCT02693535
Bosutinib: Bcr-Abl, SRC, LYN, LCK mut
Cetuximab: KRAS, NRAS, and BRAF wild-type
Crizotinib: ALK, ROS1, and MET mut
Dasatinib: Bcr-Abl, SRC, KIT, PDGFRB, EPHA2, FYN, LCK, YES1 mut
Erlotinib: EGFR mut
Olaparib: Germline or somatic BRCA1/BRCA2 inactivating mut; ATM mut or del
Palbociclib: CDKN2A/p16 loss; CDK4 and CDK6 amp
Pembrolizumab: POLE/POLD1 mut
Regorafenib: RET, VEGFR1, vascular endothelial growth factor receptor 2, VEGFR3, KIT, PDGFR-beta, RAF-1, BRAF mut/amp
Sunitinib: CSF1R, PDGFR, VEGFR mut
Temsirolimus: mTOR or TSC mut
Trastuzumab + pertuzumab: HER2 amp
Emurafenib + Cobimetinib: BRAF V600E mut
Vismodegib: PTCH1 del or inactivating mut

amp, amplification; ASCO, American Society of Clinical Oncology; del, deletion; EGFR, epidermal growth factor receptor 1; EGFRm+, EGFR-mutant; HER2, human epidermal growth factor receptor 2; inv, inversion; mut, mutation; NCI, National Cancer Institute; NSCLC, non-small cell lung cancer; SWOG, South Western Oncology Group; trans, translocation; UK, United Kingdom; USA, United States of America.

Umbrella Trials

BATTLE-2 Study

A Biomarker-Integrated Targeted Therapy Study in Previously Treated Patients with Advanced NSCLC (BATTLE-2) included patients with advanced NSCLC without sensitizing EGFR mutations and ALK fusion genes that progressed on at least one line of standard therapy (107). Two hundred patients were randomized into four arms: erlotinib, erlotinib + MK-2206 (AKT inhibitor; Merck), MK-2206 + selumetinib (MEK inhibitor), or sorafenib (Bayer), stratified for KRAS-mutation status. The median PFS was 2 months (95% CI, 1.9–2.8 months), median OS was 6.5 months (95% CI, 5.1–7.6 months), and 1-year survival was 28%. Only six partial responses and no complete responses were observed in this cohort of patients with a median of three prior lines of therapy. Importantly, there was no significant difference in PFS or OS between the different arms. Of note, KRAS-mutated patients had an improved PFS in the arms involving MK-2206 + selumetinib and sorafenib when compared with the erlotinib-containing arms.

Lung-MAP

A Biomarker-Driven Master Protocol for Previously Treated Squamous Cell Lung Cancer (Lung-MAP) is a study conducted in patients with squamous NSCLC, after developing disease progression on first-line platinum doublet therapy (NCT02154490) (108). Mandatory archival or fresh tumor biopsy samples must be provided for biomarker testing, which includes an NGS panel of over 200 genes (Foundation Medicine) and IHC for patient allocation to different rational therapies. Five different arms targeting PD-L1, PI3K, CDK4/6, FGFR, and c-Met pathways, involve the investigational agents durvalumab (AstraZeneca), taselisib (Genentech), palbociclib (Pfizer), AZD4547, and rilotumumab (Amgen) + erlotinib, respectively, with a standard arm of docetaxel chemotherapy. After results of rilotumumab in gastric cancer showed poor efficacy and increased toxicities, the sub-study of Lung-MAP with rilotumumab + erlotinib was withdrawn. All sub-studies included 1:1 randomization to investigational agent or docetaxel. This study is currently recruiting, and the expected accrual is 10,000 patients across the United States.

MATRIX Trial

The National Lung Matrix trial is non-randomized multi-arm study in the United Kingdom sponsored by University of Birmingham and Cancer Research UK (NCT02664935) (109). This study involved eight investigational arms—AZD5363 (AKT inhibitor), AZD 4547 (FGFR inhibitor), AZD2014 (mTORC1/2 inhibitor), palbocilib (CDK4/6 inhibitor; Pfizer), crizotinib, AZD9291 (third-generation EGFR inhibitor), selumetinib (MEK inhibitor) + docetaxel, and durvalumab (anti PD-L1 monoclonal antibody). Biomarker testing involves a multiplex NGS panel (Illumina) that includes various actionable mutations, which determines the allocation of patients to the appropriate investigational arms.

Basket Trials

One of the first basket studies reported was in non-melanoma patients with BRAF V600 mutations treated with vemurafenib (77). The results of the NSCLC cohort of this study have been described in a previous section of this article.

MATCH Trial

The NCI Molecular Analysis for Therapy Choice (MATCH) trial (NCT02465060) is a study that utilizes somatic genomic screening to assign patients with specific molecular aberrations to matched targeted therapy, regardless of the primary tumor site (110). This study is coordinated by the ECOG-ACRIN Cancer Research Group and involves 1,059 sites across the United States with a target recruitment of 3,000 patients. All patients must have advanced solid tumors refractory to standard therapy, undergo a mandatory fresh biopsy prior to enrolling onto the study, and to undergo a biopsy upon progression of disease. The molecular profiling assays include a targeted Ampliseq panel of 143 genes and other assays, such as IHC. The latest protocol involves 24 arms and includes agents, which have either attained FDA approval or completed trials to achieve recommended phase 2 dose (RP2D). FDA-approved drug arms include afatinib, crizotinib, osimertinib, dabrafenib (Novartis), trametinib (Novartis), ado-trastuzumab emtansine (Roche), vismodegib (Genentech), sunitinib (Pfizer), dasatinib, palbocilib, and nivolumab (Bristol-Myers Squibb). Other investigational drugs include taselisib (PI3K inhibitor), GSK2636771 (PI3K inhibitor; Glaxo-Smith Kline), defactinib (FAK inhibitor; Verastem), AZD4547 (FGFR inhibitor), AZD5363 (AKT inhibitor), and binimetinib (MEK inhibitor; Array Biopharma).

Molecular Profiling-Based Assignment of Cancer Therapy (MPACT) Trial

The MPACT study (NCT01827384), which is sponsored by the NCI aims to recruit 700 patients across three sites in the United States. Similar to the MATCH study, patients with advanced cancers, including NSCLC refractory to standard therapy will undergo a fresh biopsy to identify mutations in one of three pathways—MAPK, PI3K, or DNA repair. Patients with no identifiable mutations will be excluded from the study. The four treatment arms comprise veliparib (PARP inhibitor; Abbvie) + temozolomide, AZD-1775 (Wee1 inhibitor; Astra Zeneca) + carboplatin, everolimus (mTOR inhibitor), and trametinib (MEK inhibitor). The major difference between MATCH and MPACT is that patients in MPACT are randomized in a 2:1 fashion to either a “matched” arm or another arm based on their biomarker analysis. Biomarker analysis is performed on a 20-gene panel, and an informatics system, GeneMed, assists in streamlining the annotation of sequencing data, facilitating review of variant mutations, and identifying actionable mutations (110).

TAPUR Trial

Testing the Use of FDA-Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People with Advanced Stage Cancer (TAPUR) is a trial sponsored by the American Society of Clinical Oncology with a plan to enroll 1,030 patients with advanced solid tumors refractory to standard therapy. All patients will need to harbor at least one somatic genomic variant that can be targeted by one of the drugs in the 15 arms of the study.

Combination Treatment Strategies and Precision Medicine

Combining various anticancer agents with different mechanisms of action and minimal overlapping toxicities has been a principle applied to the management of NSCLC with varying degrees of success. In the chemotherapy era, the addition of platinum chemotherapy to other agents showed clear benefit of combination therapy (111). However, there was a limit to the number of chemotherapeutic agents that could be combined simultaneously, with triplet therapies not showing an incremental benefit over doublet regimens due to increasing toxicity (112). Combination regimen with targeted agents has innumerable permutations and is an area of active research, with many trials being conducted. A major challenge with combination targeted therapy has been synergistic toxicity, particularly involving horizontal blockade of parallel signaling pathways. These toxicities prevent dose escalation of drugs to single agent RP2Ds, leading to subtherapeutic doses and lack of target modulation due to poor pharmacokinetic exposures. While a few positive trials have emerged, many more studies have been negative (113).

Combination Therapy with EGFR Inhibitors

During the early development of EGFR inhibitors, four large randomized phase III trials were conducted combining erlotinib and gefitinib with first-line chemotherapy in unselected patients with NSCLC. All these combination trials failed to show a survival benefit and were associated with increased toxicities (114117). Intercalated erlotinib and chemotherapy (platinum given on day 1, gemcitabine on day 1 and 8, and erlotinib day 15–28) showed an OS benefit of 3.1 months (18.3 versus 15.2 months) in the FAST-ACT2 study in an unselected population, but subgroup analysis demonstrated that the benefit was only in the EGFR-mutated population (118). The combination of pemetrexed and gefitinib has demonstrated a PFS benefit of 4.9 months (15.8 versus 10.9 months) in a phase II study of EGFR-mutated NSCLC (119). Combining chemotherapy upon progression on EGFR TKI therapy also did not demonstrate a benefit in the phase III IMPRESS trial (120). Combination of bevacizumab with erlotinib in an EGFR-mutated population demonstrated a PFS benefit of 6.3 months (16 versus 9.7 months), with OS data pending (121). The rational combination of cetuximab and afatinib appear to combine with favorable response rates, albeit with higher toxicity (23). The insulin growth factor-1 receptor monoclonal antibody figitumumab (Pfizer) did not demonstrate a survival benefit and also had significantly higher toxicities when combined with erlotinib (122).

Immune Checkpoint Inhibition and Precision Medicine

Immune checkpoint inhibition has transformed the current management landscape of NSCLC and the incorporation of this group of agents into NSCLC management is rapidly evolving. Pembrolizumab (Merck), nivolumab (Bristol-Myers Squibb), and atezolizumab (Roche) have been FDA approved for use in NSCLC. It is beyond the scope of this review to discuss immunotherapeutic strategies in detail. Cumulative data suggest PD-L1 expressing tumors benefit from both PD-1 and PD-L1 antibodies. However, several uncertainties exist, including the definition of PD-L1 positivity and variation in results observed between PD-L1 IHC assays used by different pharmaceutical companies. Currently, nivolumab is FDA approved for use in the second-line treatment of NSCLC after failure of platinum doublet therapy without biomarker selection, while pembrolizumab is FDA-approved for use in the first-line setting for tumors that express PD-L1 in at least 50% of cells. This in itself highlights the discrepancies in current clinical practice in the management of NSCLC with PD-1 inhibitors. The debate surrounding biomarker selection for immunotherapies rages on, with other novel promising predictive biomarkers of response emerging (123).

Conclusion

The management of advanced NSCLC continues to evolve due to rapid recent advances made in precision medicine. The ultimate goal remains the identification of molecular subgroups of patients with driver aberrations who may benefit from molecularly targeted therapies that provide long-term control of NSCLC with minimal toxicities. It is now clear that there is unlikely to be a single “magic bullet” for NSCLC, and there is still a large proportion of patients with unknown or complex multiple drivers, and those harboring known driver aberrations, which are currently still not druggable. Moving forward, we will need to focus on innovative biomarker-driven trial designs with greater collaborations between academic and industry partners. There is, therefore, still much work to be done before we can truly achieve precision medicine in NSCLC.

Author Contributions

RS: conception or design of the work; acquisition, analysis, and interpretation of data for the work; drafting the work; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. MC-P: acquisition, analysis, and interpretation of data for the work; drafting the work; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. DC: acquisition, analysis, and interpretation of data for the work; drafting the work; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. TY: conception of the work; interpretation of data for the work; revising it critically for important intellectual content; and final approval of the version.

Conflict of Interest Statement

TY has received research support from AstraZeneca and Merck, and has served on Advisory Boards and received travel support from Pfizer and Bristol-Myers Squibb. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Acknowledgments

The Drug Development Unit of the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research is supported in part by a programme grant from Cancer Research UK. Support is also provided by the Experimental Cancer Medicine Centre (to The Institute of Cancer Research) and the National Institute for Health Research Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research).

Abbreviations

CRUK, cancer research United Kingdom; EGFR, epidermal growth factor receptor; EMA, European medicines agency; FDA, food and drug administration; FISH, fluorescent in situ hybridization; IHC, immunohistochemistry; NGS, next generation sequencing; NICE, national institute for clinical excellence; NSCLC, non-small cell lung cancer; OS, overall survival; PCR, polymerase chain reaction; PFS, progression-free survival; RP2D, recommended phase 2 dose; TKI, tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.

References

  • 1.Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small cell lung cancer collaborative group. BMJ (1995) 311:899–909. 10.1136/bmj.311.7010.899 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med (2002) 346:92–8. 10.1056/NEJMoa011954 [DOI] [PubMed] [Google Scholar]
  • 3.Fossella F, Pereira JR, Von Pawel J, Pluzanska A, Gorbounova V, Kaukel E, et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol (2003) 21:3016–24. 10.1200/JCO.2003.12.046 [DOI] [PubMed] [Google Scholar]
  • 4.Delbaldo C, Michiels S, Syz N, Soria JC, Le Chevalier T, Pignon JP. Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA (2004) 292:470–84. 10.1001/jama.292.4.470 [DOI] [PubMed] [Google Scholar]
  • 5.Scagliotti GV, Parikh P, Von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol (2008) 26:3543–51. 10.1200/JCO.2007.15.0375 [DOI] [PubMed] [Google Scholar]
  • 6.Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med (2013) 368:2385–94. 10.1056/NEJMoa1214886 [DOI] [PubMed] [Google Scholar]
  • 7.Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med (2014) 371:1963–71. 10.1056/NEJMoa1406766 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol (1995) 19:183–232. 10.1016/1040-8428(94)00144-I [DOI] [PubMed] [Google Scholar]
  • 9.Volm M, Rittgen W, Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas. Br J Cancer (1998) 77:663–9. 10.1038/bjc.1998.106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol (2003) 21:2237–46. 10.1200/JCO.2003.10.038 [DOI] [PubMed] [Google Scholar]
  • 11.Kris MG, Natale RB, Herbst RS, Lynch TJ, Jr, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA (2003) 290:2149–58. 10.1001/jama.290.16.2149 [DOI] [PubMed] [Google Scholar]
  • 12.Cohen MH, Williams GA, Sridhara R, Chen G, Mcguinn WD, Jr, Morse D, et al. United States food and drug administration drug approval summary: gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res (2004) 10:1212–8. 10.1158/1078-0432.CCR-03-0564 [DOI] [PubMed] [Google Scholar]
  • 13.Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, Von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa survival evaluation in lung cancer). Lancet (2005) 366:1527–37. 10.1016/S0140-6736(05)67625-8 [DOI] [PubMed] [Google Scholar]
  • 14.Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med (2005) 353:123–32. 10.1056/NEJMoa050753 [DOI] [PubMed] [Google Scholar]
  • 15.Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (2004) 304:1497–500. 10.1126/science.1099314 [DOI] [PubMed] [Google Scholar]
  • 16.Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med (2009) 361:947–57. 10.1056/NEJMoa0810699 [DOI] [PubMed] [Google Scholar]
  • 17.Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med (2010) 362:2380–8. 10.1056/NEJMoa0909530 [DOI] [PubMed] [Google Scholar]
  • 18.Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol (2011) 12:735–42. 10.1016/S1470-2045(11)70184-X [DOI] [PubMed] [Google Scholar]
  • 19.Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer (2014) 110:55–62. 10.1038/bjc.2013.721 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol (2013) 31:3327–34. 10.1200/JCO.2012.44.2806 [DOI] [PubMed] [Google Scholar]
  • 21.Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol (2014) 15:213–22. 10.1016/S1470-2045(13)70604-1 [DOI] [PubMed] [Google Scholar]
  • 22.Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol (2015) 16:141–51. 10.1016/S1470-2045(14)71173-8 [DOI] [PubMed] [Google Scholar]
  • 23.Janjigian YY, Smit EF, Groen HJ, Horn L, Gettinger S, Camidge DR, et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov (2014) 4:1036–45. 10.1158/2159-8290.CD-14-0326 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yang JJ, Zhou Q, Yan HH, Zhang XC, Chen HJ, Tu HY, et al. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer (2017) 116:568–74. 10.1038/bjc.2016.456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Urata Y, Katakami N, Morita S, Kaji R, Yoshioka H, Seto T, et al. Randomized phase III study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108L. J Clin Oncol (2016) 34:3248–57. 10.1200/JCO.2015.63.4154 [DOI] [PubMed] [Google Scholar]
  • 26.Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med (2005) 352:786–92. 10.1056/NEJMoa044238 [DOI] [PubMed] [Google Scholar]
  • 27.Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med (2017) 16:629–40. 10.1056/NEJMoa1612674 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature (2007) 448:561–6. 10.1038/nature05945 [DOI] [PubMed] [Google Scholar]
  • 29.Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol (2009) 27:4247–53. 10.1200/JCO.2009.22.6993 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol (2009) 4:1450–4. 10.1097/JTO.0b013e3181c4dedb [DOI] [PubMed] [Google Scholar]
  • 31.Zou HY, Li Q, Lee JH, Arango ME, Mcdonnell SR, Yamazaki S, et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res (2007) 67:4408–17. 10.1158/0008-5472.CAN-06-4443 [DOI] [PubMed] [Google Scholar]
  • 32.Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, Mcdonnell SR, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther (2007) 6:3314–22. 10.1158/1535-7163.MCT-07-0365 [DOI] [PubMed] [Google Scholar]
  • 33.Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med (2014) 371:2167–77. 10.1056/NEJMoa1408440 [DOI] [PubMed] [Google Scholar]
  • 34.Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med (2010) 363:1734–9. 10.1056/NEJMoa1007478 [DOI] [PubMed] [Google Scholar]
  • 35.Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med (2014) 370:1189–97. 10.1056/NEJMoa1311107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Crino L, Ahn MJ, De Marinis F, Groen HJ, Wakelee H, Hida T, et al. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol (2016) 34:2866–73. 10.1200/JCO.2015.65.5936 [DOI] [PubMed] [Google Scholar]
  • 37.Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol (2014) 15:1119–28. 10.1016/S1470-2045(14)70362-6 [DOI] [PubMed] [Google Scholar]
  • 38.Ou SH, Ahn JS, De Petris L, Govindan R, Yang JC, Hughes B, et al. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol (2016) 34:661–8. 10.1200/JCO.2015.63.9443 [DOI] [PubMed] [Google Scholar]
  • 39.Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol (2016) 17:234–42. 10.1016/S1470-2045(15)00488-X [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Nokihara H, Hida T, Konda M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in ALK-inhibitor naïve ALK-positive non-small cell lung cancer: primary results from the J-Alex study. J Clin Oncol (2016) 34(Suppl):abstr 9008. [Google Scholar]
  • 41.Solomon BJ, Bauer TM, Felip E, Besse B, James LP, Clancy JS, et al. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC). J Clin Oncol (2016) 34(Suppl):abstr 9009. [Google Scholar]
  • 42.Kim D-W, Tiseo M, Ahn M-J, Reckamp KL, Hansen KH, Kim S-W, et al. Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): first report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA). J Clin Oncol (2016) 34(Suppl):abstr 9007. [Google Scholar]
  • 43.Horn L, Wakelee H, Blumenschein G, Reckamp K, Waqar S, Carter CA, et al. Phase I/II trial of X-396 in patients with ALK + non-small cell lung cancer: correlation with plasma and tissue genotyping and response to therapy. Ann Oncol (2016) 27:1210D. 10.1093/annonc/mdw383.10 [DOI] [Google Scholar]
  • 44.Isozaki H, Ichihara E, Takigawa N, Ohashi K, Ochi N, Yasugi M, et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res (2016) 76:1506–16. 10.1158/0008-5472.CAN-15-1010 [DOI] [PubMed] [Google Scholar]
  • 45.Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, Mcdonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol (2012) 30:863–70. 10.1200/JCO.2011.35.6345 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta (2009) 1795:37–52. 10.1016/j.bbcan.2008.07.006 [DOI] [PubMed] [Google Scholar]
  • 47.Mazieres J, Zalcman G, Crino L, Biondani P, Barlesi F, Filleron T, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol (2015) 33:992–9. 10.1200/JCO.2014.58.3302 [DOI] [PubMed] [Google Scholar]
  • 48.Subbiah V, Hong DS, Meric-Bernstam F. Clinical activity of ceritinib in ROS1-rearranged non-small cell lung cancer: bench to bedside report. Proc Natl Acad Sci U S A (2016) 113:1419–20. 10.1073/pnas.1522052113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med (2006) 355:2542–50. 10.1056/NEJMoa061884 [DOI] [PubMed] [Google Scholar]
  • 50.Reck M, Von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol (2010) 21:1804–9. 10.1093/annonc/mdq020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.NICE. (2008). Available from: https://www.nice.org.uk/guidance/ta148
  • 52.Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet (2014) 384:665–73. 10.1016/S0140-6736(14)60845-X [DOI] [PubMed] [Google Scholar]
  • 53.Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol (2014) 15:143–55. 10.1016/S1470-2045(13)70586-2 [DOI] [PubMed] [Google Scholar]
  • 54.Chu BF, Otterson GA. Incorporation of antiangiogenic therapy into the non-small-cell lung cancer paradigm. Clin Lung Cancer (2016) 17:493–506. 10.1016/j.cllc.2016.05.020 [DOI] [PubMed] [Google Scholar]
  • 55.Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol (2010) 11:1172–83. 10.1016/S1470-2045(10)70232-1 [DOI] [PubMed] [Google Scholar]
  • 56.Boro A, Arlt MJ, Lengnick H, Robl B, Husmann M, Bertz J, et al. Prognostic value and in vitro biological relevance of neuropilin 1 and neuropilin 2 in osteosarcoma. Am J Transl Res (2015) 7:640–53. [PMC free article] [PubMed] [Google Scholar]
  • 57.Pirker R, Pereira JR, Szczesna A, Von Pawel J, Krzakowski M, Ramlau R, et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet (2009) 373:1525–31. 10.1016/S0140-6736(09)60569-9 [DOI] [PubMed] [Google Scholar]
  • 58.Lynch TJ, Patel T, Dreisbach L, Mccleod M, Heim WJ, Hermann RC, et al. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J Clin Oncol (2010) 28:911–7. 10.1200/JCO.2009.21.9618 [DOI] [PubMed] [Google Scholar]
  • 59.Thatcher N, Hirsch FR, Luft AV, Szczesna A, Ciuleanu TE, Dediu M, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol (2015) 16:763–74. 10.1016/S1470-2045(15)00021-2 [DOI] [PubMed] [Google Scholar]
  • 60.Guo B, Cen H, Tan X, Liu W, Ke Q. Prognostic value of MET gene copy number and protein expression in patients with surgically resected non-small cell lung cancer: a meta-analysis of published literatures. PLoS One (2014) 9:e99399. 10.1371/journal.pone.0099399 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer (2009) 124:1778–84. 10.1002/ijc.24150 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Scagliotti G, Von Pawel J, Novello S, Ramlau R, Favaretto A, Barlesi F, et al. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol (2015) 33:2667–74. 10.1200/JCO.2014.60.7317 [DOI] [PubMed] [Google Scholar]
  • 63.Basilico C, Pennacchietti S, Vigna E, Chiriaco C, Arena S, Bardelli A, et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res (2013) 19:2381–92. 10.1158/1078-0432.CCR-12-3459 [DOI] [PubMed] [Google Scholar]
  • 64.Katayama R, Aoyama A, Yamori T, Qi J, Oh-Hara T, Song Y, et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res (2013) 73:3087–96. 10.1158/0008-5472.CAN-12-3256 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH, Jr, Blumenschein GR, Jr, et al. Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol (2013) 31:4105–14. 10.1200/JCO.2012.47.4189 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Spigel DR, Edelman MJ, Mok T, O’Byrne K, Paz-Ares L, Yu W, et al. Treatment rationale study design for the Met lung trial: a randomized, double-blind phase III study of onartuzumab (MetMAb) in combination with erlotinib versus erlotinib alone in patients who have received standard chemotherapy for stage IIIB or IV Met-positive non-small-cell lung cancer. Clin Lung Cancer (2012) 13:500–4. [DOI] [PubMed] [Google Scholar]
  • 67.Spigel DR, Edelman MJ, O’Byrne K, Paz-Ares L, Shames DS, Yu W, et al. Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. J Clin Oncol (2014) 32(Suppl):5s; abstr 8000. [DOI] [PubMed] [Google Scholar]
  • 68.Koeppen H, Yu W, Zha J, Pandita A, Penuel E, Rangell L, et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib ± onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res (2014) 20:4488–98. 10.1158/1078-0432.CCR-13-1836 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov (2015) 5:850–9. 10.1158/2159-8290.CD-15-0285 [DOI] [PubMed] [Google Scholar]
  • 70.Drilon AE, Camidge DR, Ou S-HI, Clark JW, Socinski MA, Weiss J, et al. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC). J Clin Oncol (2016) 34(Suppl):abstr 108. [Google Scholar]
  • 71.Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol (2016) 34:721–30. 10.1200/JCO.2015.63.4600 [DOI] [PubMed] [Google Scholar]
  • 72.Rybkin II, Kio EA, Masood A, Shum MK, Halmos B, Blakely CM, et al. Amethyst NSCLC trial: phase 2, parallel-arm study of receptor tyrosine kinase inhibitor MGCD265, in patients with advanced or metastatic non-small cell lung cancer with activating genetic alterations in mesenchymal-epithelial transition factor. J Clin Oncol (2016) 34(Suppl):abstr TS9099. [Google Scholar]
  • 73.Heist RS, Sequist LV, Borger D, Gainor JF, Arellano RS, Le LP, et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol (2016) 11:1242–5. 10.1016/j.jtho.2016.06.013 [DOI] [PubMed] [Google Scholar]
  • 74.Ou SI, Young L, Schrock AB, Johnson A, Klempner SJ, Zhu VW, et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol (2017) 12:137–40. 10.1016/j.jtho.2016.09.119 [DOI] [PubMed] [Google Scholar]
  • 75.Camidge DR, Ou S-HI, Shapiro G, Otterson GA, Villaruz LC, Villalona-Calero MA, et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J Clin Oncol (2014) 32(Suppl):5s; abstr 8001. [Google Scholar]
  • 76.Villaruz LC, Socinski MA, Abberbock S, Berry LD, Johnson BE, Kwiatkowski DJ, et al. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the lung cancer mutation consortium. Cancer (2015) 121:448–56. 10.1002/cncr.29042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med (2015) 373:726–36. 10.1056/NEJMoa1502309 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Gatzemeier U, Groth G, Butts C, Van Zandwijk N, Shepherd F, Ardizzoni A, et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol (2004) 15:19–27. 10.1093/annonc/mdh031 [DOI] [PubMed] [Google Scholar]
  • 79.De Greve J, Teugels E, Geers C, Decoster L, Galdermans D, De Mey J, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer (2012) 76:123–7. 10.1016/j.lungcan.2012.01.008 [DOI] [PubMed] [Google Scholar]
  • 80.Gandhi L, Bahleda R, Tolaney SM, Kwak EL, Cleary JM, Pandya SS, et al. Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol (2014) 32:68–75. 10.1200/JCO.2012.47.2787 [DOI] [PubMed] [Google Scholar]
  • 81.Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O’Connell J, et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol (2015) 26:1421–7. 10.1093/annonc/mdv186 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol (2012) 30:4352–9. 10.1200/JCO.2012.44.1477 [DOI] [PubMed] [Google Scholar]
  • 83.Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol (2016) 17:1653–60. 10.1016/S1470-2045(16)30562-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Falchook GS, Ordóñez NG, Bastida CC, Stephens PJ, Miller VA, Gaido L, et al. Effect of the RET inhibitor vandetanib in a patient with RET fusion-positive metastatic non-small-cell lung cancer. J Clin Oncol (2016) 34:141–4. 10.1200/JCO.2013.50.5016 [DOI] [PubMed] [Google Scholar]
  • 85.Spoerke JM, O’Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK, et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res (2012) 18:6771–83. 10.1158/1078-0432.CCR-12-2347 [DOI] [PubMed] [Google Scholar]
  • 86.Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med (2011) 3:75ra26. 10.1126/scitranslmed.3002003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S, et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle (2008) 7:665–9. 10.4161/cc.7.5.5485 [DOI] [PubMed] [Google Scholar]
  • 88.Soria JC, Shepherd FA, Douillard JY, Wolf J, Giaccone G, Crino L, et al. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann Oncol (2009) 20:1674–81. 10.1093/annonc/mdp060 [DOI] [PubMed] [Google Scholar]
  • 89.Ramalingam SS, Owonikoko TK, Behera M, Subramanian J, Saba NF, Kono SA, et al. Phase II study of docetaxel in combination with everolimus for second- or third-line therapy of advanced non-small-cell lung cancer. J Thorac Oncol (2013) 8:369–72. 10.1097/JTO.0b013e318282709c [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Vansteenkiste JF, Canon JL, Braud FD, Grossi F, De Pas T, Gray JE, et al. Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the phase II BASALT-1 study. J Thorac Oncol (2015) 10:1319–27. 10.1097/JTO.0000000000000607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Krebs MG, Spicer J, Steele N, Talbot DC, Brada M, Wilson RH, et al. TAX-TORC: the novel combination of weekly paclitaxel and the dual mTORC1/2 inhibitor AZD2014 for the treatment of squamous NSCLC. 17th World Conference on Lung Cancer. Vienna: (2016). ID4803 p. [Google Scholar]
  • 92.Hyman DM, Smyth L, Bedard PL, Oza A, Dean E, Armstrong A, et al. AZD5363, a catalytic pan-Akt inhibitor, in Akt1 E17K mutation positive advanced solid tumors. Mol Cancer Ther (2015) 14:B109–109. 10.1158/1535-7163.TARG-15-B109 [DOI] [Google Scholar]
  • 93.Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature (2012) 489:519–25. 10.1038/nature11404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Nogova L, Sequist LV, Cassier PA, Hidalgo M, Delord J-P, Schuler MH, et al. Targeting FGFR1-amplified lung squamous cell carcinoma with the selective pan-FGFR inhibitor BGJ398. J Clin Oncol (2014) 32(Suppl):5s; abstr 8034. [Google Scholar]
  • 95.Paik PK, Shen R, Ferry D, Soria J-C, Mathewson A, Kilgour E, et al. A phase 1b open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers: preliminary antitumor activity and pharmacodynamic data. J Clin Oncol (2014) 32(Suppl):5s; abstr 8035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Weeden CE, Solomon B, Asselin-Labat ML. FGFR1 inhibition in lung squamous cell carcinoma: questions and controversies. Cell Death Discov (2015) 1:15049. 10.1038/cddiscovery.2015.49 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, Peckitt C, et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov (2016) 6:838–51. 10.1158/2159-8290.CD-15-1246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Ahrendt SA, Decker PA, Alawi EA, Zhu Yr YR, Sanchez-Cespedes M, Yang SC, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer (2001) 92:1525–30. [DOI] [PubMed] [Google Scholar]
  • 99.Ledford H. Cancer: the Ras renaissance. Nature (2015) 520:278–80. 10.1038/520278a [DOI] [PubMed] [Google Scholar]
  • 100.Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol (2013) 14:38–47. 10.1016/S1470-2045(12)70489-8 [DOI] [PubMed] [Google Scholar]
  • 101.Carter CA, Rajan A, Keen C, Szabo E, Khozin S, Thomas A, et al. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann Oncol (2016) 27:693–9. 10.1093/annonc/mdw008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Blumenschein GR, Jr, Smit EF, Planchard D, Kim DW, Cadranel J, De Pas T, et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann Oncol (2015) 26:894–901. 10.1093/annonc/mdv072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Harris SJ, Luken MJ, Perez DR, Lopez RP, Parmar M, Prathapan V, et al. Updated efficacy and safety results from the phase I study of intermittent dosing of the dual MEK/RAF inhibitor, RO5126766 in patients (pts) with RAS/RAF mutated advanced solid tumours. J Clin Oncol (2016) 34(Suppl):abstr 2582. [Google Scholar]
  • 104.Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov (2011) 1:78–89. 10.1158/2159-8274.CD-11-0005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol (2015) 10:1670–4. 10.1097/01.JTO.0000473485.38553.f0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Sequist LV, Heist RS, Shaw AT, Fidias P, Rosovsky R, Temel JS, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol (2011) 22:2616–24. 10.1093/annonc/mdr489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Papadimitrakopoulou V, Lee JJ, Wistuba II, Tsao AS, Fossella FV, Kalhor N, et al. The BATTLE-2 study: a biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol (2016) 34:3638–47. 10.1200/JCO.2015.66.0084 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Steuer CE, Papadimitrakopoulou V, Herbst RS, Redman MW, Hirsch FR, Mack PC, et al. Innovative clinical trials: the LUNG-MAP study. Clin Pharmacol Ther (2015) 97:488–91. 10.1002/cpt.88 [DOI] [PubMed] [Google Scholar]
  • 109.Middleton G, Crack LR, Popat S, Swanton C, Hollingsworth SJ, Buller R, et al. The national lung matrix trial: translating the biology of stratification in advanced non-small-cell lung cancer. Ann Oncol (2015) 26:2464–9. 10.1093/annonc/mdv394 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Do K, O’Sullivan Coyne G, Chen AP. An overview of the NCI precision medicine trials-NCI MATCH and MPACT. Chin Clin Oncol (2015) 4:31. 10.3978/j.issn.2304-3865.2015.08.01 [DOI] [PubMed] [Google Scholar]
  • 111.Le Chevalier T, Brisgand D, Douillard JY, Pujol JL, Alberola V, Monnier A, et al. Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients. J Clin Oncol (1994) 12:360–7. 10.1200/JCO.1994.12.2.360 [DOI] [PubMed] [Google Scholar]
  • 112.Azim HA, Jr, Elattar I, Loberiza FR, Jr, Azim H, Mok T, Ganti AK. Third generation triplet cytotoxic chemotherapy in advanced non-small cell lung cancer: a systematic overview. Lung Cancer (2009) 64:194–8. 10.1016/j.lungcan.2008.08.011 [DOI] [PubMed] [Google Scholar]
  • 113.Sundar R, Valeri N, Harrington KJ, Yap TA. Combining molecularly targeted agents: is more always better? Clin Cancer Res (2016) 23:1123–5. 10.1158/1078-0432.CCR-16-2399 [DOI] [PubMed] [Google Scholar]
  • 114.Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial – INTACT 1. J Clin Oncol (2004) 22:777–84. 10.1200/JCO.2004.08.001 [DOI] [PubMed] [Google Scholar]
  • 115.Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial – INTACT 2. J Clin Oncol (2004) 22:785–94. 10.1200/JCO.2004.07.215 [DOI] [PubMed] [Google Scholar]
  • 116.Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol (2005) 23:5892–9. 10.1200/JCO.2005.02.840 [DOI] [PubMed] [Google Scholar]
  • 117.Gatzemeier U, Pluzanska A, Szczesna A, Kaukel E, Roubec J, De Rosa F, et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol (2007) 25:1545–52. 10.1200/JCO.2005.05.1474 [DOI] [PubMed] [Google Scholar]
  • 118.Wu YL, Lee JS, Thongprasert S, Yu CJ, Zhang L, Ladrera G, et al. Intercalated combination of chemotherapy and erlotinib for patients with advanced stage non-small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. Lancet Oncol (2013) 14:777–86. 10.1016/S1470-2045(13)70254-7 [DOI] [PubMed] [Google Scholar]
  • 119.Cheng Y, Murakami H, Yang PC, He J, Nakagawa K, Kang JH, et al. Randomized phase II trial of gefitinib with and without pemetrexed as first-line therapy in patients with advanced nonsquamous non-small-cell lung cancer with activating epidermal growth factor receptor mutations. J Clin Oncol (2016) 34:3258–66. 10.1200/JCO.2016.66.9218 [DOI] [PubMed] [Google Scholar]
  • 120.Soria JC, Wu YL, Nakagawa K, Kim SW, Yang JJ, Ahn MJ, et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol (2015) 16:990–8. 10.1016/S1470-2045(15)00121-7 [DOI] [PubMed] [Google Scholar]
  • 121.Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol (2014) 15:1236–44. 10.1016/S1470-2045(14)70381-X [DOI] [PubMed] [Google Scholar]
  • 122.Scagliotti GV, Bondarenko I, Blackhall F, Barlesi F, Hsia TC, Jassem J, et al. Randomized, phase III trial of figitumumab in combination with erlotinib versus erlotinib alone in patients with nonadenocarcinoma nonsmall-cell lung cancer. Ann Oncol (2015) 26:497–504. 10.1093/annonc/mdu517 [DOI] [PubMed] [Google Scholar]
  • 123.Lim JS, Sundar R, Chénard-Poirier M, Lopez J, Yap TA. Emerging biomarkers for PD-1 pathway cancer therapy. Biomark Med (2017) 11:53–67. 10.2217/bmm-2016-0228 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Medicine are provided here courtesy of Frontiers Media SA

RESOURCES