Abstract
The hepatic cytochrome P450 system, with numerous different P450 enzymes, is characterized by its inducibility by a variety of endogenous and exogenous compounds. Specific forms of P450, exhibiting distinct but partially overlapping substrate specificities, are increased in response to a given chemical. Consequently, the rate of elimination of the inducing compound is often enhanced and the system is in this respect adaptive to changes in the environment. Transcriptional activation mechanisms for the endo- or xenobiotically controlled P450 synthesis are well documented. Here we describe a mechanism for posttranslational ligand-dependent stabilization of ethanol-inducible P450IIE1 in hepatocyte cultures. Glucagon or 8-bromoadenosine 3',5'-cyclic monophosphate causes an enhanced rate of P450IIE1 degradation in the hepatocytes as well as phosphorylation on Ser-129, a reaction which denatures the protein under in vitro conditions. Substrates for the enzyme, such as ethanol and imidazole, protect the enzyme from phosphorylation and degradation in hepatocytes but do not influence phosphorylation or degradation of phenobarbital-inducible P450IIB1. Our proposed mechanism, which remains to be shown under in vivo conditions, describes the P450 molecules as receptors for the compounds in question and might provide a way by which endo- and xenobiotics regulate their own rate of metabolism.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlomowicz B., Waxman D. J., Utesch D., Oesch F., Friedberg T. Phosphorylation of carcinogen metabolizing enzymes: regulation of the phosphorylation status of the major phenobarbital inducible cytochromes P-450 in hepatocytes. Carcinogenesis. 1989 Jan;10(1):225–228. doi: 10.1093/carcin/10.1.225. [DOI] [PubMed] [Google Scholar]
- Brown N. F., Salter A. M., Fears R., Brindley D. N. Glucagon, cyclic AMP and adrenaline stimulate the degradation of low-density lipoprotein by cultured rat hepatocytes. Biochem J. 1989 Sep 1;262(2):425–429. doi: 10.1042/bj2620425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connelly P. A., Botelho L. H., Sisk R. B., Garrison J. C. A study of the mechanism of glucagon-induced protein phosphorylation in isolated rat hepatocytes using (Sp)-cAMPS and (Rp)-cAMPS, the stimulatory and inhibitory diastereomers of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1987 Mar 25;262(9):4324–4332. [PubMed] [Google Scholar]
- Eliasson E., Johansson I., Ingelman-Sundberg M. Ligand-dependent maintenance of ethanol-inducible cytochrome P-450 in primary rat hepatocyte cell cultures. Biochem Biophys Res Commun. 1988 Jan 15;150(1):436–443. doi: 10.1016/0006-291x(88)90539-6. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
- Haniu M., Armes L. G., Yasunobu K. T., Shastry B. A., Gunsalus I. C. Amino acid sequence of the Pseudomonas putida cytochrome P-450. II. Cyanogen bromide peptides, acid cleavage peptides, and the complete sequence. J Biol Chem. 1982 Nov 10;257(21):12664–12671. [PubMed] [Google Scholar]
- Johansson I., Ekström G., Scholte B., Puzycki D., Jörnvall H., Ingelman-Sundberg M. Ethanol-, fasting-, and acetone-inducible cytochromes P-450 in rat liver: regulation and characteristics of enzymes belonging to the IIB and IIE gene subfamilies. Biochemistry. 1988 Mar 22;27(6):1925–1934. doi: 10.1021/bi00406a019. [DOI] [PubMed] [Google Scholar]
- Koch J. A., Waxman D. J. Posttranslational modification of hepatic cytochrome P-450. Phosphorylation of phenobarbital-inducible P-450 forms PB-4 (IIB1) and PB-5 (IIB2) in isolated rat hepatocytes and in vivo. Biochemistry. 1989 Apr 18;28(8):3145–3152. doi: 10.1021/bi00434a005. [DOI] [PubMed] [Google Scholar]
- Müller R., Schmidt W. E., Stier A. The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 1985 Jul 22;187(1):21–24. doi: 10.1016/0014-5793(85)81205-9. [DOI] [PubMed] [Google Scholar]
- Newman S. L., Barwick J. L., Elshourbagy N. A., Guzelian P. S. Measurement of the metabolism of cytochrome P-450 in cultured hepatocytes by a quantitative and specific immunochemical method. Biochem J. 1982 Apr 15;204(1):281–290. doi: 10.1042/bj2040281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulos T. L., Howard A. J. Crystal structures of metyrapone- and phenylimidazole-inhibited complexes of cytochrome P-450cam. Biochemistry. 1987 Dec 15;26(25):8165–8174. doi: 10.1021/bi00399a022. [DOI] [PubMed] [Google Scholar]
- Pyerin W., Taniguchi H. Phosphorylation of hepatic phenobarbital-inducible cytochrome P-450. EMBO J. 1989 Oct;8(10):3003–3010. doi: 10.1002/j.1460-2075.1989.tb08450.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rangarajan P. N., Padmanaban G. Regulation of cytochrome P-450b/e gene expression by a heme- and phenobarbitone-modulated transcription factor. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3963–3967. doi: 10.1073/pnas.86.11.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronis M. J., Ingelman-Sundberg M. Acetone-dependent regulation of cytochrome P-450j (IIE1) and P-450b (IIB1) in rat liver. Xenobiotica. 1989 Oct;19(10):1161–1165. doi: 10.3109/00498258909043168. [DOI] [PubMed] [Google Scholar]
- Schuetz E. G., Li D., Omiecinski C. J., Muller-Eberhard U., Kleinman H. K., Elswick B., Guzelian P. S. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol. 1988 Mar;134(3):309–323. doi: 10.1002/jcp.1041340302. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
- Sogawa K., Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. Location of regulatory elements responsible for drug induction in the rat cytochrome P-450c gene. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8044–8048. doi: 10.1073/pnas.83.21.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song B. J., Veech R. L., Park S. S., Gelboin H. V., Gonzalez F. J. Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J Biol Chem. 1989 Feb 25;264(6):3568–3572. [PubMed] [Google Scholar]
- Taniguchi H., Pyerin W., Stier A. Conversion of hepatic microsomal cytochrome P-450 to P-420 upon phosphorylation by cyclic AMP dependent protein kinase. Biochem Pharmacol. 1985 May 15;34(10):1835–1837. doi: 10.1016/0006-2952(85)90657-4. [DOI] [PubMed] [Google Scholar]
- Umeno M., Song B. J., Kozak C., Gelboin H. V., Gonzalez F. J. The rat P450IIE1 gene: complete intron and exon sequence, chromosome mapping, and correlation of developmental expression with specific 5' cytosine demethylation. J Biol Chem. 1988 Apr 5;263(10):4956–4962. [PubMed] [Google Scholar]
- Watkins P. B., Wrighton S. A., Schuetz E. G., Maurel P., Guzelian P. S. Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture. J Biol Chem. 1986 May 15;261(14):6264–6271. [PubMed] [Google Scholar]