Abstract
Background
Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The classification and annotation of these genomes constitute important assets in the discovery of genomic variability, taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying and typing newly sequenced strains of diverse virus families.
Results
Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments.
Conclusion
The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-017-1602-3) contains supplementary material, which is available to authorized users.
Keywords: Sequence classification, Prediction, Virus classification
Background
Genomic sequence classification assigns a given sequence into its related group of known sequences with similar properties, traits or characteristics. It is a fundamental practice in different research areas of microbiology yielding major challenges in comparative genomics. Accurate genomic sequence classification and typing could help to enhance the phylogenetics and functional studies of viruses [1]. They also help in determining pathogenicity, developing vaccines, studying epidemiology and drug resistance [1, 2]. Recent advances in DNA sequencing and molecular biology techniques provide an immense collection of genomic information. Such data volume raises challenges for genetic-based classification techniques. Three main approaches have been designed and implemented to classify different types of viruses based on their genomic sequence characteristics. The first is sequence alignment-based approach which is widely used, e.g. in similarity search methods (BLAST [3], USEARCH [4], etc.) and in pairwise distance based-methods (PASC [5], DEmARC [6], etc.). The second is phylogenetic-based approach. It is implemented in several tools, e.g. REGA [7, 8] and Pplacer [9]. The aim of these methods is to place an unknown sequence on an existing phylogenetic tree of a set of reference sequences. Each time a given sequence has to be classified, it is realigned with the set of reference sequences. Then, either a new phylogenetic tree is inferred or the given sequence is placed in the existing tree. The third is alignment-free approach including methods based on nucleotide correlations [10] and sequence composition [2, 11]. It transforms sequences or their relationships to feature vectors and then constructs a phylogeny, a statistical model or a machine learning model [12, 13]. These methods are reviewed in Vinga and Almeida [12], Mantaci et al. [14], Xing et al. [15] and Bonham-Carter et al. [13]. Restriction fragment length polymorphism (RFLP), a molecular biology technique [16], is used to type different virus strains [17–21]. Several algorithmic approaches have tackled theoretical and experimental problems related to the restriction enzyme data such as restriction mapping problem (see chap. 2 [22]), phylogeny estimation [23–25], SNP genotyping [26] and analysis of RFLP digitized gel images [27, 28]. However, large scale computational sequence classification based on the RFLP technique is not yet covered in literature. Due to the genetic polymorphism in DNA sequences, fragments resulting from enzyme digestions are different in terms of number and length between individuals or types. A set of restriction enzymes grounds a fragment pattern signature for each sequence. Therefore, similar sequences ought to have similar fragment patterns and thus similar restriction site distributions. This a priori knowledge could be used to build a machine learning model where sequences are represented by restriction site distributions as a feature vector and a class feature corresponding to a taxonomic level (genus, species, etc.). In this paper we introduce CASTOR, a machine learning web platform, to classify and type sequences. CASTOR integrates a new alignment-free method based on the RFLP principle. Our in silico method is independent of the sequence structure or function and is also not organism-specific. CASTOR is designed to facilitate the reuse, sharing and reproducibility of sequence classification experiments.
Methods
Overview of the approach
In this paper, we propose an in silico approach to identify and classify viral DNA sequences based on their restriction enzyme sites using supervised machine learning techniques. Like other supervised learning approaches, the proposed one is divided into two main units (Fig. 1). The classifier construction unit builds and trains classification models (or classifiers). It requires a set of reference viral genomic sequences, their classes and a list of restriction enzyme patterns. It starts by creating a training set including a group of feature vectors. The latter is computed from the distribution of the restriction site patterns on the given DNA sequences and then refined by feature selection methods. A collection of learning classifiers are then trained and evaluated using 10-fold cross validation in order to choose the best classifier. The second unit (prediction unit) is intended to predict the classes or annotations of given viral sequences. The inputs of this unit are a classifier, a set of DNA sequences and the same list of restriction enzyme patterns used to train the classifier.
Restriction fragment pattern-based features
Here, we propose a set of features simulating the outcome of the RFLP technique. From REBASE database [29], we extracted a list of 172 type II restriction enzymes and their recognition sites. Type II family cleaves (cuts) DNA sequences precisely on each occurrence of the recognition site. Then, the restriction digestion of DNA sequences is computationally simulated. In order to build a training set, for a sequence s and enzyme z we compute two metrics representing the distribution of the digested fragments: the number of cuts of the enzyme (C U T(s,z)) and the root mean square of digested fragment lengths (R M S(s,z)) calculated as
1 |
where n is the number of fragments (C U T(s,z)+1) and l i is the length of the i th fragment in linear genomes. For circular genomes n=C U T(s,z). Other metrics could be easily computed from the fragment digestion to construct the feature vectors.
Feature selection methods
The selection of an optimal subset of features improves the learning efficiency and increases the predictive performance. Feature selection techniques reduce the learning set dimension by pruning irrelevant and redundant features. Two relevant methods of feature reduction are provided. The first method (topAttributes) ranks the features according to their information gain [30] and selects a subset of top-k features. Information gain estimates the mutual information between a feature and the target class. The second method (correlation) uses the Spearman’s rank correlation coefficient to construct a set of uncorrelated features. The correlation coefficient between two feature ranking vectors u and v of size n is computed as follows:
2 |
A two-tailed p-value is computed to test the null hypothesis which states that two feature vectors are uncorrelated. In order to remove one of the two correlated features, two strategies could be used: discarding the feature with the largest sum of absolute correlation coefficients or the one with the smallest information gain score.
Learning and evaluation
We explored three types of classifiers: (1) symbolic methods (C4.5 decision tree (J48) [31] and random forests (RFT) [32]), (2) statistical methods (naive Bayes classifier (NBA) [33, 34], support vector machine (SVM) [35] and K-nearest neighbors (IBK) [36, 37]) and (3) ensemble methods (Adaboost (ADA) [38] and Bagging (BAG) [39] both combined with J48); see Additional file 1: Table S1 for more details. A 10-fold cross-validation strategy is used to assess the performance of the trained classifiers. Performance measures are weighted according to the number of instances and computed for the overall classification. The performance measures are:
3) (4) (5) (6 |
where TP, TN, FP, and FN are the number of true positive, true negative, false positive and false negative predictions, respectively. TPR and FPR are the true positive rate and the false positive rate, respectively. We used Weka data mining program to perform the training and the evaluation [40].
To include a negative class in the training sets, two approaches could be used. First, provide manually constructed negative class from collected relevant data. Second, build it with the provided negative class generator. This generator constructs altered sequences data from a sampling with replacement of the positive set sequences. To alter the sampled sequences, we reshape the RFLP length distribution of the training set by randomly shrinking, expanding or keeping unchanged the length of the sampled sequences. Then, each sequence is randomly shuffled while preserving k-mer counts.
Datasets
In this study, we applied our approach to a wide range of viruses. We selected one dsDNA virus (human papillomavirus (HPV)), one dsDNA-RT virus (hepatitis B virus (HBV)) and one ssRNA-RT virus (human immunodeficiency virus type 1 (HIV-1)). (1) HPVs have a circular double stranded DNA genome of ∼8000 bp and belong to five genera (Alpha, Beta, Gamma, Mu and Nu). HPVs belonging to a genus share over 53% identity of their complete genomes and ones in the same species level share over 62% of identity [41, 42]. We assessed the performance of HPV classification in the genus and species taxonomic levels. At the species level, we selected only the Alpha HPV genus representing the most abundant and diverse genomes in databases. It is divided into thirteen species (Alpha 1–11, Alpha 13–14). Unfortunately, some HPV genera (Mu and Nu) and Alpha HPV species (1, 5, 8, 11 and 13) were underrepresented and were therefore discarded. (2) HBV genomes are smaller (3200 bp) and are circular partly double stranded DNA. HBVs are classified into eight genotypes (A–H) with at least 8% divergence among their genomic sequences [43]. We evaluated the performances of our method for the genotyping of HBV strains. HPV and HBV complete genome sequences were downloaded from the NCBI RefSeq database [44]. The taxonomic annotations were extracted from the NCBI Taxonomy database [44]. (3) HIV-1 genomes have two copies of positive-sense single-stranded RNA with ∼9700 bp. Phylogenetically, HIV-1 strains are divided into four groups: M, N, O and P [45, 46]. M group strains are worldwide prevalent. They are categorized into pure subtypes (A–D, F–H, J and K) and recombinant forms (up to 70 CRFs and URFs). Genetic variations among subtypes are about 20–30% for env gene, 7–20% for gag gene and 10% for pol gene [47]. For HIV-1 classification, we studied complete genomes (CGs) and fragments covering pol gene from the position 2253 to 3554 with respect to HXB2 reference sequence and having a minimum size of 1 Kbp (pol fragments). HIV-1 sequences were extracted from the Los Alamos HIV sequence database (http://www.hiv.lanl.gov/). For all the datasets, only complete, curated and well-annotated sequences were selected. Moreover, each class ought to have an adequate number of genomic sequences in order to have a representative genetic diversity.
Simulation studies
Raw viral sequence datasets, described above, were class-size imbalanced, i.e., the difference in the number of genome sequences belonging to each class was relatively large. Generally, epidemiological studies are conducted on host-specific viruses (human, cattle, etc.) with the highest prevalence and pathogenicity [48, 49]. This leads to more data for some groups of viruses over others. Usually, training standard classifiers on imbalanced datasets affects their performance (mainly sensitivity and specificity) and misleads the interpretation of their accuracy [50, 51]. Under-sampling majority class approach has been shown to perform well [52] and could be used with standard algorithms. Hence, from each previous dataset, we randomly performed under-sampling, without replacement, of the larger classes to have relatively the same sizes as the other classes. In order to identify the best parameters of the classifiers, we randomly sampled 10 datasets for each of the HPV genera, HPV Alpha species, HBV genotypes, HIV-1 M subtypes CGs and HIV-1 M subtypes pol fragments data. For each obtained sample, we performed a 10-fold cross-validation study with different classifiers built as follows. We constructed all the combinations of the two metrics (CUT and RMS), the two feature selection methods (topAttributes and correlation) and the seven learning algorithms. This construction yielded 28 c o m b i n a t i o n s∗10 d a t a s e t s=280 e x p e r i m e n t s for each virus classification.
Results and discussion
The Results section is divided into four parts: first, we show how the RFLP signatures are suitable for viral classification; second, we assess the performance of several competing classification algorithms on different virus datasets; third, we compare the prediction made by CASTOR against widely used methods for HIV-1 datasets, one of the most difficult to classify and fourth, we present the CASTOR web platform.
Classification with RFLP signatures in virus families
Figure 2 highlights the natural RFLP cuts in the collected HPV, HBV and HIV-1 datasets. The second column of the figure shows the multidimensional scaling (MDS) plot of the first two dimensions of distances between the feature vectors of the genomes. The separation between the different HPV genera (Fig. 2 a) could approximatively be drawn, which is partly the case for the HPV species. The Cohesion [41] and Silhouette [53] indexes allow to measure the compactness and separability of classes. Here, both indexes show moderate values (between 0.2 and 0.8 for C o h e s i o n i n d e x and –0.2 to 0.7 for S i l h o u e t t e i n d e x) indicating that the classes are not well distinct. Several instances could be mislabeled or share the same RFLP cut patterns with other classes. This results in low or negative values of S i l h o u e t t e a in HPV Alpha 3, 7 and HPV Gamma (Fig. 2 a). With CASTOR, the best HPV Alpha Species classification obtains a TPR of 0.992 and FPR of 0.002 in 10-fold cross-validation analyses of 118 instances (see Table 1). The power of RFLP cuts in classification of viruses could be observed in HBV genotypes heatmap (see Fig. 2 b). HBV highlights three genotypes (A, E and F) with C o h e s i o n i n d e x e s for most instances above 0.7 indicating very coherent classes. But B and C genotypes have values between 0.1 and 0.6. The S i l h o u e t t e i n d e x plots show several instances of B, C, E and G genotypes that have an striking disagreement with their assigned classes (S i l h o u e t t e i n d e x<−0.1). Even with these constraints, CASTOR achieves the genotyping of 230 HBV instances with TPR of 0.996 and FPR of 0.001 according to a 10-fold cross-validation study (see Table 1). The HIV-1 cut site patterns have more variability among pure subtypes and CRFs (Fig. 2 c). Likely, the MDS plot shows a moderate subtype clustering for the main HIV-1 subtypes. But this clustering is not well separated compared to HPV and HBV. This variability among classes is reflected in low values of the C o h e s i o n i n d e x (≤0.4). All, suggesting either variability, noise or mislabelling. For instance, >30% of HIV-1 B and HIV-1 C instances tend to have RFLP cut patterns of other subtypes (negative S i l h o u e t t e i n d e x e s). With CASTOR, the subtyping of HIV-1 group M within 18 main subtypes was assessed for 597 instances with a TPR of 0.983 and FPR of 0.001.
Table 1.
Group of virus | Organism | Classification | # of classes | # of instances | TPR | FPR | F-measure | Classifier ID |
---|---|---|---|---|---|---|---|---|
I (dsDNA) | HPV | Genera | 3 | 125 | 0.992 | 0.005 | 0.992 | PMSHPV01 |
Alpha species | 8 | 118 | 0.992 | 0.002 | 0.992 | PMSHPV02 | ||
VII (dsDNA-RT) | HBV | Genotypes | 8 | 230 | 0.996 | 0.001 | 0.996 | PMSHBV01 |
VI (ssRNA-RT) | HIV-1 | Groups | 4 | 76 | 1.000 | 0.000 | 1.000 | PMSHIV01 |
M Subtypes | 18 | 597 | 0.983 | 0.001 | 0.983 | PMSHIV02 |
This table contains the best results of the experimental study performed on the different datasets. The evaluation measures are obtained with 10-fold cross-validation analysis. The column Classifier ID contains the corresponding models available in CASTOR platform
Previously, it has been clearly shown that RFLP has a power for classification in several viruses such as HPV [17, 18], HBV [20] and HIV [19]. But these studies are mostly limited to two to five classes. To the best of our knowledge, our study constitutes the first large scale and multi-class analyses of RFLP cut for classification. It provides the basis to explore large and various types of classifications, in particular those based on machine learning methods.
Machine learning classifier tuning and performance
The CASTOR platform relies on machine learning methods for the classification of viruses based on RFLP signatures of nucleotide sequences. The platform is detailed in the CASTOR web platform section. Three important parameters constitute the kernel of each CASTOR classifier: a metric, a feature selection method and a learning algorithm. To assess the different combination of the models, we performed a 10-fold cross-validation of the 280 experiments associated to each of the five datasets (HPV genera, HPV Alpha species, HBV genotypes, HIV-1 M subtypes CGs and HIV-1 M subtypes pol fragments). From the overall results of the five virus classifications, it is not obvious to distinguish the best candidate between CUT and RMS metrics. In the genotyping of HBV, CUT performs better than RMS (p-value = 0.0012, Wilcoxon/Kruskal-Wallis test) while in the HPV genera and species classifications RMS performs better than CUT (p-values 5.00E-03 and 0.0293, respectively; Wilcoxon/Kruskal-Wallis test) (Additional file 1: Figure S1). However the mean of weighted F-measures for both methods is in all cases ≥0.906 (with a minimum of 0.793 and a maximum of 0.996). The same analyses were performed on HIV-1 CGs and pol fragments. CUT performs slightly better than RMS in both datasets when comparing the mean of weighted F-measures (p-values 0.0213 and 0.0237 for CGs and pol fragments, respectively; Wilcoxon/Kruskal-Wallis test). Due to the variability of HIV-1, the mean of weighted F-measures falls to 0.857 in CGs and 0.793 in pol fragments (Additional file 1: Figure S1). Hence for the remaining of our study, we will fix the RFLP metric according to its performance on the corresponding datasets.
Additional file 1: Figure S2 presents the comparative analyses of the two feature selection methods (correlation and topAttribute) in the 280 experiments for each dataset. The mean of weighted F-measures of the two feature selection methods are not statistically different in all datasets (based on the Wilcoxon/Kruskal-Wallis test). In fact, the results of the two methods are correlated for the three viruses with the Spearman’s rank correlation coefficient ranging between 0.772 and 0.968 (see Additional file 1: Figure S4). In these simulations, the seven learning algorithms have various performances according to the different datasets. The algorithm J48 has the worst weighted F-measure values (see Fig. 3). However, its performance improves when combined with RFT or BAG algorithms. In general, SVM performs better in four of five datasets with mean of weighted F-measures > 0.906 and ranks number one in HPV Alpha species, HBV genotypes and HIV-1 subtypes classifications and four in HPV genera classification. It is followed by RFT, NBA and IBK. However, RFT and NBA are affected by a large variance (Fig. 3). These rankings are clearly observable on Additional file 1: Figure S3 and Figure S4 presenting respectively the correlations CUT/RMS and topAttribute/correlation grouped by algorithms. While most algorithms have similar performance with CUT or RMS, Naive Bayes surprisingly performs better with CUT.
Assessing the performance CASTOR on HIV-1 data
CASTOR exhibits high accuracy for different HIV-1 classification
Table 2 highlights CASTOR prediction accuracies on five CG and seven pol fragment HIV-1 classifications. For each dataset, the best performing models (classifiers) have been identified according to a 10-fold cross-validation analysis. The F-measure of the best classifier for the HIV-1 groups M, N, O and P indicates that all the sequences are correctly classified (for CGs and pol fragments). For the prediction of the main HIV-1 pure subtypes as well as CRFs, F-measures are above 0.971 (with F P R≤0.003) for both CGs and pol fragments when the pure subtypes and CRFs are separate models. When combining pure subtypes and CRFs, the F-measure still remains above 0.971 for CGs but it drops to 0.919 when the classes are balanced to 30 instances per class or 0.962 for 200 instances per class. It appears that the CASTOR models are underperforming when we try to predict between pure subtypes and CRFs (F-measures of 0.795 and 0.885 for CGs and pol fragments, respectively).
Table 2.
Classification | # of classes | # of instances | [min - max] instances/class | TPR | FPR | F-measure | Classifier ID | |
---|---|---|---|---|---|---|---|---|
Complete genomes | Groups (M, N, O and P) | 4 | 76 | [4 – 32] | 1.000 | 0.000 | 1.000 | PMVHIVGC01 |
Pure subtypes | 6 | 189 | [30 – 36] | 0.995 | 0.001 | 0.995 | PMVHIVGC02 | |
CRFs | 12 | 234 | [10 – 30] | 1.000 | 0.000 | 1.000 | PMVHIVGC03 | |
Pure subtypes and CRFs | 18 | 423 | [10 – 36] | 0.981 | 0.001 | 0.981 | PMVHIVGC04 | |
Pure subtypes vs CRFs | 2 | 200 | [100 – 100] | 0.795 | 0.205 | 0.795 | PMVHIVGC05 | |
pol fragments | Groups (M, N, O and P) | 4 | 94 | [4 – 45] | 1.000 | 0.000 | 1.000 | PMVHIVPL01 |
Pure subtypes | 6 | 1800 | [300 – 300] | 0.983 | 0.003 | 0.983 | PMVHIVPL02 | |
CRFs | 16 | 480 | [30 – 30] | 0.971 | 0.002 | 0.971 | PMVHIVPL03 | |
CRFs | 6 | 1200 | [200 – 200] | 0.993 | 0.001 | 0.993 | PMVHIVPL04 | |
Pure subtypes and CRFs | 23 | 690 | [30 – 30] | 0.920 | 0.004 | 0.919 | PMVHIVPL05 | |
Pure subtypes and CRFs | 12 | 2400 | [200 – 200] | 0.962 | 0.003 | 0.962 | PMVHIVPL06 | |
Pure subtypes vs CRFs | 2 | 200 | [100 – 100] | 0.885 | 0.115 | 0.885 | PMVHIVPL07 |
This table contains the TPR, FPR and F-measure of 12 HIV-1 classifications obtained with 10-fold cross-validation analysis. For each classification, the number of corresponding classes and instances are given. The range [min-max] indicates the interval of instance frequencies per class used during the training of each model. The column Classifier ID contains the corresponding models available in CASTOR platform
Comparing COMET, REGA and CASTOR
Next, we compared the performance of CASTOR against the most powerful and widely used HIV-1 specific predictors namely COMET [2] and REGA version 2.0 [7, 8] (Fig. 4). These comparisons are based on CG as well as pol fragment data. It is important to notice that these programs are fixed and do not allow neither any change on the trained classes nor new training samples. Here the actual training of COMET and REGA includes respectively 55 and 22 classes for either CG or pol fragments. To avoid under-represented classes, CASTOR was trained on 18 classes for CGs and 28 classes for pol fragments (models are available under the classifier IDs PMSHIV02 and PMSHIV03, respectively). We performed three comparisons (see Fig. 4). The first, named complete sampling, assesses the performance of each method on 10 percent of randomly sampled Los Alamos HIV data. This sampling permits to assess the performance of the predictors to fit realistic data with unknown classes. The second, named specific subtypes, focuses, for each method, only on the corresponding trained subtypes. The third, named common subtypes, compares the performance of the methods on the intersection of the 3 trained subtypes. This strategy is used due to the fact that the training of COMET and REGA cannot be changed. Thus, it is difficult to adapt or perform other classification studies or larger benchmark analyses. Figure 4 shows that for CGs, REGA performs the best followed by CASTOR and for pol fragments COMET outperforms, followed again by CASTOR. In the two types of data, when not performing the best, REGA or COMET performance drops drastically by more than 10% and ranks at the third position (Fig. 4). Meanwhile CASTOR ranks second in both two types of data. With CGs, CASTOR obtains a correct classification of 72.41% against the sampling of Los Alamos HIV data when REGA obtains 76.77%. But when testing predictors on their trained classes, the percentage of correct classification drastically increases to 98.33 and 96.61% respectively for REGA and CASTOR. This result remains almost the same when comparing only the common trained classes among the three predictors (Fig. 4). These common classes cover 75 and 93% of the overall instances of the sampling of CGs and pol fragments, respectively. The mean TPR of CASTOR is higher than 0.950 in the case of either pure subtypes or CRFs. The TPR of REGA drops to 0.835 when assessing CRFs and remains almost perfect for pure subtypes (Table 3). In pol fragments, COMET outperforms CASTOR and REGA in all comparisons. Applying the three methods, COMET, REGA and CASTOR, on 10% random sampling of Los Alamos HIV data, the percentages of correct classification were 91.74, 72.48 and 86.64%, respectively. This result is confirmed when comparing only the common trained classes where COMET reaches 95.57% and CASTOR 89.51%. Note that REGA could not perform higher than 76% and has a mean TPR of 0.953 for pure subtypes competing with COMET. In CRF instances, COMET and CASTOR obtain almost an equal mean of TPR around 0.930 (Table 4). REGA cannot perform well in CRF classification and has a mean of TPR equal to 0.570. CASTOR has higher FPR values compared to the two other programs in overall classifications. This fact is not surprising since REGA and COMET are specifically tuned to predict HIV data. Their predictions with lower scores tend to be discarded or ambiguous. For instance, COMET has 32% of its CG predictions that are unassigned as well as 5% of its pol fragment predictions. Hence, these numbers are higher than the false positive values of CASTOR, but they are not included in the FPR computation. However, it will be interesting to include in CASTOR a threshold of inclusion of a given sequence into a class. This could help reducing the FPR but it would require deeper analyses. It also should be associated to the open-set classification problem that is beyond the scope of this paper.
Table 3.
COMET | REGA | CASTOR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
# of instances | TPR | FPR | F-measure | TPR | FPR | F-measure | TPR | FPR | F-measure | ||
CRFs | HIV1_01_AE | 100 | 0.960 | 0.000 | 0.980 | 0.970 | 0.000 | 0.985 | 1.000 | 0.000 | 1.000 |
HIV1_02_AG | 10 | 0.900 | 0.000 | 0.947 | 0.700 | 0.000 | 0.824 | 0.900 | 0.007 | 0.818 | |
Mean | 0.930 | 0.000 | 0.964 | 0.835 | 0.000 | 0.905 | 0.950 | 0.004 | 0.909 | ||
Pure subtypes | HIV1_A | 100 | 0.660 | 0.000 | 0.795 | 0.990 | 0.000 | 0.995 | 0.940 | 0.000 | 0.969 |
HIV1_B | 100 | 0.910 | 0.000 | 0.953 | 1.000 | 0.000 | 1.000 | 0.960 | 0.003 | 0.975 | |
HIV1_C | 100 | 0.970 | 0.000 | 0.985 | 1.000 | 0.000 | 1.000 | 0.970 | 0.003 | 0.980 | |
Mean | 0.847 | 0.000 | 0.911 | 0.997 | 0.000 | 0.998 | 0.957 | 0.002 | 0.975 |
This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs complete genomes. The shown classes belong to the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIV02
Table 4.
COMET | REGA | CASTOR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
# of instances | TPR | FPR | F-measure | TPR | FPR | F-measure | TPR | FPR | F-measure | ||
CRFs | HIV1_01_AE | 1000 | 0.989 | 0.000 | 0.993 | 0.007 | 0.000 | 0.014 | 0.956 | 0.001 | 0.975 |
HIV1_02_AG | 1000 | 0.952 | 0.002 | 0.967 | 0.000 | 0.000 | 0.000 | 0.853 | 0.005 | 0.897 | |
HIV1_06_cpx | 698 | 0.924 | 0.000 | 0.958 | 0.938 | 0.000 | 0.965 | 0.927 | 0.003 | 0.943 | |
HIV1_07_BC | 1000 | 0.977 | 0.000 | 0.988 | 0.988 | 0.000 | 0.993 | 0.982 | 0.002 | 0.980 | |
HIV1_08_BC | 399 | 0.965 | 0.000 | 0.981 | 0.990 | 0.000 | 0.994 | 0.972 | 0.001 | 0.970 | |
HIV1_11_cpx | 58 | 0.828 | 0.000 | 0.906 | 0.690 | 0.000 | 0.816 | 0.897 | 0.006 | 0.588 | |
HIV1_12_BF | 222 | 0.860 | 0.000 | 0.925 | 0.374 | 0.000 | 0.544 | 0.932 | 0.008 | 0.807 | |
Mean | 0.928 | 0.000 | 0.960 | 0.570 | 0.000 | 0.618 | 0.931 | 0.004 | 0.880 | ||
Pure subtypes | HIV1_A | 1000 | 0.966 | 0.001 | 0.980 | 0.968 | 0.106 | 0.654 | 0.891 | 0.006 | 0.917 |
HIV1_B | 1000 | 0.995 | 0.001 | 0.993 | 0.945 | 0.000 | 0.970 | 0.817 | 0.007 | 0.866 | |
HIV1_C | 1000 | 0.990 | 0.001 | 0.991 | 0.997 | 0.000 | 0.997 | 0.912 | 0.003 | 0.942 | |
HIV1_D | 1000 | 0.938 | 0.000 | 0.968 | 0.911 | 0.000 | 0.953 | 0.892 | 0.010 | 0.899 | |
HIV1_F | 1000 | 0.927 | 0.000 | 0.962 | 0.970 | 0.000 | 0.985 | 0.914 | 0.003 | 0.940 | |
HIV1_G | 1000 | 0.915 | 0.001 | 0.952 | 0.929 | 0.007 | 0.931 | 0.778 | 0.003 | 0.860 | |
Mean | 0.955 | 0.001 | 0.974 | 0.953 | 0.019 | 0.915 | 0.867 | 0.005 | 0.904 |
This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs pol fragments. The shown classes belong to the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIV03
Even though CASTOR is not a specific HIV-1 classifier, it competes with the most powerful methods in HIV-1. Unlike COMET and REGA, CASTOR provides an easy way of performing several types of classification (see Table 2). It also has no restriction on the size of data and is time efficient. Hence, we completed the analysis by performing a test on the whole Los Alamos HIV dataset (without the training sequences of the three methods). For CGs (3 778 instances), CASTOR completes the test in 1 min 59 s with an accuracy of 91.2%. While for the pol fragments (119 005 instances), it requires 20min10s with an accuracy of 85.41%. It shows that CASTOR takes 0.01s to process a sequence that is far more efficient than the time results indicated in [2] for REGA (28s/sequence), but 10-fold less efficient than COMET (0.001s/sequence) [2]. Furthermore, due to size issues, it is not possible to perform such large analyses in actual version of COMET server. Overall, CASTOR highlights a good accuracy on the classification of the three studied viruses. However this accuracy is slightly lower than specific virus predictors as shown previously. But it exhibits more analysis capacity, permitting several and highly accurate set of classifications. As shown in Table 2, this accuracy is higher than 90% for almost all studies except for comparing HIV-1 M pure subtypes vs CRFs. For less complex genomes such as HPV and HBV, the mean of weighted F-measures is higher than 0.912. CASTOR will allow to increase the class representatives, to add or remove classes and also to benchmark several types of classification. For viruses without existing predictors, it could accurately cover the needs as it is for HPV, instead of relying on the similarity sequence search such as BLAST [3] or USEARCH [4]. Sequence search is generally not recommended for subtyping since it will not allow the identification of novel forms, it cannot also aggregate common attributes of a class while predicting [2, 4].
CASTOR web platform
CASTOR is available as a public web platform. It is composed of four main applications. (1) CASTOR-build allows users to create and train new classifiers from a set of labeled virus sequences. It contains default parameters and advanced options letting users to customize the classifier parameters. It can be used also to update the parameters or input sequences of an already built classifier. The constructed classifiers can be saved in an exportable file locally or published to the community via CASTOR-database described below. (2) CASTOR-optimize constructs improved classifiers. Unlike CASTOR-build that allows users to define metrics, algorithms and feature selection techniques, it assesses all combinations of the classification parameters and provides the best fitting classifier according to the input data. (3) CASTOR-predict is the kernel application that allows users to annotate viral sequences according to a chosen classifier. Also, it serves as an evaluation module for classifiers with labeled test sets. The results are provided with enriched graphics and performance measures (4) CASTOR-database is a public database of classifiers which allows the community to share their expertise and models. It facilitates experiment reproducibility and model refinement. A characteristic viewer and a search engine of the published classifiers are also implemented. Hence, from the interface of CASTOR-database, users can download, reuse, update and comment the classifiers. To the best of our knowledge, CASTOR constitutes the first RFLP-based prediction platform for the classification of viral sequences.
Conclusion
In this paper, we have shown that RFLP has a great performance in large scale sequence classification. We also provide CASTOR, the first viral sequence classification platform based on RFLP. We claim that CASTOR can perform well for different types of viruses (Group I, Group VI and Group VII) with mean of weighted F-measures > 0.900 in most cases (see Table 1). In the future, we will attempt to increase the performance by modelling the boundaries of the classes and including an open-set approach to deal with instances from unknown classes. The CASTOR platform implements several metrics and classifiers, allowing generic and diverse analyses within the same environment. CASTOR allows the storage of models enabling reproducible experiments and open data access. Even though CASTOR is scaled for viruses, it can be used and extended easily for other types of organisms, including whole genome and partial sequences. In the future, more models will be included, in particular those specialized in less studied organisms and/or without dedicated tools. In addition, scientists could add their tuned models helping CASTOR to enhance the predictions. We will also optimize the platform to allow other types of classification such as functional, disease related and geographical classifications. Hence, CASTOR could quickly become a reference in comparative genomics focusing on various types of sequence classification.
Acknowledgements
Nothing to declare.
Funding
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du Québec-Nature et Technologie (FRQNT) to ABD. MAR, AAMD and BD are FRQNT fellows. MAR is a NSERC fellow.
Availability of data and materials
The CASTOR web platform is available at http://castor.bioinfo.uqam.ca.
Authors’ contributions
MAR, AH and ABD conceived and designed the study. MAR developed and implemented CASTOR program and web platform. MAR, AAMD, GK and ABD collected the virus datasets and analyzed the HIV-1 results. MAR and AH performed the simulations. MAR, BD and ABD computed and analyzed the Cohesion and Silhouette indexes. MAR and ABD analyzed the overall results. MAR, AH, AAMD and ABD wrote the paper. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Ethics approval and consent to participate
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abbreviations
- ADA
Adaboost
- BAG
Bagging
- DNA
Deoxyribonucleic acid
- FN
False negative
- FP
False positive
- FPR
False positive rate
- HBV
Hepatitis B viruses
- HIV
Human immunodeficiency viruses
- HPV
Human papillomaviruses
- IBK
K-nearest neighbors
- J48
C4
- 5 decision tree; MDS
Multidimensional scaling NBA: Naive Bayes classifier
- RFLP
Restriction fragment length polymorphism
- RFT
Random forests
- RMS
Root mean square
- SVM
Support vector machine
- TN
True negative
- TP
True positive
- TPR
True positive rate
Additional file
Contributor Information
Mohamed Amine Remita, Email: remita.mohamed_amine@courrier.uqam.ca.
Ahmed Halioui, Email: halioui.ahmed@courrier.uqam.ca.
Abou Abdallah Malick Diouara, Email: diouara.abou_abdallah_malick@courrier.uqam.ca.
Bruno Daigle, Email: daigle.bruno@courrier.uqam.ca.
Golrokh Kiani, Email: kiani.golrokh@courrier.uqam.ca.
Abdoulaye Baniré Diallo, Email: diallo.abdoulaye@uqam.ca.
References
- 1.Van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev. 2001;14(3):547–60. doi: 10.1128/CMR.14.3.547-560.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Struck D, Lawyer G, Ternes AM, Schmit JC, Bercoff DP. Comet: adaptive context-based modeling for ultrafast hiv-1 subtype identification. Nucleic Acids Res. 2014;42(18):e144. doi: 10.1093/nar/gku739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461. [DOI] [PubMed] [Google Scholar]
- 5.Bao Y, Chetvernin V, Tatusova T. Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol. 2014;159(12):3293–304. doi: 10.1007/s00705-014-2197-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lauber C, Gorbalenya AE. Partitioning the genetic diversity of a virus family: Approach and evaluation through a case study of picornaviruses. J Virol. 2012;86(7):3890–904. doi: 10.1128/JVI.07173-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.de Oliveira T, Deforche K, Cassol S, Salminen M, Paraskevis D, Seebregts C, Snoeck J, van Rensburg EJ, Wensing AMJ, van de Vijver DA, Boucher CA, Camacho R, Vandamme AM. An automated genotyping system for analysis of hiv-1 and other microbial sequences. Bioinformatics. 2005;21(19):3797–800. doi: 10.1093/bioinformatics/bti607. [DOI] [PubMed] [Google Scholar]
- 8.Alcantara LCJ, Cassol S, Libin P, Deforche K, Pybus OG, Van Ranst M, Galvao-Castro B, Vandamme AM, de Oliveira T. A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences. Nucleic Acids Res. 2009;37(Web Server issue):W634–42. doi: 10.1093/nar/gkp455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538. doi: 10.1186/1471-2105-11-538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Liu Z, Meng J, Sun X. A novel feature-based method for whole genome phylogenetic analysis without alignment: Application to HEV genotyping and subtyping. Biochem Biophys Res Commun. 2008;368(2):223–30. doi: 10.1016/j.bbrc.2008.01.070. [DOI] [PubMed] [Google Scholar]
- 11.Yu C, Hernandez T, Zheng H, Yau SC, Huang HH, He RL, Yang J, Yau SS-T. Real time classification of viruses in 12 dimensions. PLoS One. 2013;8(5):e64328. doi: 10.1371/journal.pone.0064328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Vinga S, Almeida J. Alignment-free sequence comparison–a review. Bioinformatics. 2003;19(4):513–23. doi: 10.1093/bioinformatics/btg005. [DOI] [PubMed] [Google Scholar]
- 13.Bonham-Carter O, Steele J, Bastola D. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis. Brief Bioinform. 2014;15(6):890–905. doi: 10.1093/bib/bbt052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mantaci S, Restivo A, Sciortino M. Distance measures for biological sequences: Some recent approaches. Int J Approx Reason. 2008;47(1):109–24. doi: 10.1016/j.ijar.2007.03.011. [DOI] [Google Scholar]
- 15.Xing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM SIGKDD Explor. 2010;12(1):40–48. doi: 10.1145/1882471.1882478. [DOI] [Google Scholar]
- 16.Williams RC. Restriction fragment length polymorphism (RFLP) Am J Phys Anthropol. 1989;32(S10):159–84. doi: 10.1002/ajpa.1330320508. [DOI] [Google Scholar]
- 17.Bernard HU, Chan SY, Manos MM, Ong CK, Villa LL, Delius H, Peyton CL, Bauer HM, Wheeler CM. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis. 1994;170(5):1077–85. doi: 10.1093/infdis/170.5.1077. [DOI] [PubMed] [Google Scholar]
- 18.Nobre RJ, de Almeida LP, Martins TC. Complete genotyping of mucosal human papillomavirus using a restriction fragment length polymorphism analysis and an original typing algorithm. J Clin Virol. 2008;42(1):13–21. doi: 10.1016/j.jcv.2007.11.021. [DOI] [PubMed] [Google Scholar]
- 19.Janini LM, Pieniazek D, Peralta JM, Schechter M, Tanuri A, Vicente ACP, dela Torre N, Pieniazek NJ, Luo CC, Kalish ML, Schochetman G, Rayfield MA. Identification of single and dual infections with distinct subtypes of human immunodeficiency virus type 1 by using restriction fragment length polymorphism analysis. Virus Genes. 1996;13(1):69–81. doi: 10.1007/BF00576981. [DOI] [PubMed] [Google Scholar]
- 20.Mizokami M, Nakano T, Orito E, Tanaka Y, Sakugawa H, Mukaide M, Robertson BH. Hepatitis B virus genotype assignment using restriction fragment length polymorphism patterns. FEBS Lett. 1999;450(1–2):66–71. doi: 10.1016/S0014-5793(99)00471-8. [DOI] [PubMed] [Google Scholar]
- 21.Nakao T, Enomoto N, Takada N, Takada A, Date T. Typing of hepatitis C virus genomes by restriction fragment length polymorphism. J Gen Virol. 1991;72(9):2105–12. doi: 10.1099/0022-1317-72-9-2105. [DOI] [PubMed] [Google Scholar]
- 22.Pevzner P. Computational Molecular Biology: An Algorithmic Approach. Cambridge: MIT press; 2000. [Google Scholar]
- 23.Adams J, Rothman E. Estimation of phylogenetic relationships from dna restriction patterns and selection of endonuclease cleavage sites. Proc Natl Acad Sci USA. 1982;79(11):3560–4. doi: 10.1073/pnas.79.11.3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Templeton AR. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of human and the apes. Evolution. 1983;37(2):221–44. doi: 10.2307/2408332. [DOI] [PubMed] [Google Scholar]
- 25.Felsenstein J. Phylogenies from restriction sites: A maximum-likelihood approach. Evolution. 1992;46(1):159–73. doi: 10.2307/2409811. [DOI] [PubMed] [Google Scholar]
- 26.Chang HW, Cheng YH, Chuang LY, Yang CH. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping. BMC Bioinformatics. 2010;11:173. doi: 10.1186/1471-2105-11-173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Bajla I, Holländer I, Fluch S, Burg K, Kollár M. An alternative method for electrophoretic gel image analysis in the GelMaster software. Comput Methods Programs Biomed. 2005;77(3):209–31. doi: 10.1016/j.cmpb.2004.09.007. [DOI] [PubMed] [Google Scholar]
- 28.Maramis CF, Delopoulos AN, Lambropoulos AF. A computerized methodology for improved virus typing by PCR-RFLP gel electrophoresis. IEEE Trans Biomed Eng. 2011;58(8):2339–51. doi: 10.1109/TBME.2011.2153202. [DOI] [PubMed] [Google Scholar]
- 29.Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43(Database issue):298–9. doi: 10.1093/nar/gku1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Ben-Bassat M. 35 Use of distance measures, information measures and error bounds in feature evaluation. Handbook of Statistics. 1982;2:773–91. doi: 10.1016/S0169-7161(82)02038-0. [DOI] [Google Scholar]
- 31.Quinlan JR. C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc; 1993. [Google Scholar]
- 32.Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324. [DOI] [Google Scholar]
- 33.Langley P, Iba W, Thompson K. Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI’92. Menlo Park: AAAI Press; 1992. An analysis of bayesian classifiers. [Google Scholar]
- 34.John GH, Langley P. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. UAI’95. San Francisco: Morgan Kaufmann Publishers Inc; 1995. Estimating continuous distributions in bayesian classifiers. [Google Scholar]
- 35.Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. [Google Scholar]
- 36.Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7. doi: 10.1109/TIT.1967.1053964. [DOI] [Google Scholar]
- 37.Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6(1):37–66. [Google Scholar]
- 38.Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39. doi: 10.1006/jcss.1997.1504. [DOI] [Google Scholar]
- 39.Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40. [Google Scholar]
- 40.Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor. 2009;11(1):10–18. doi: 10.1145/1656274.1656278. [DOI] [Google Scholar]
- 41.Daigle B, Makarenkov V, Diallo AB. Data Science, Learning by Latent Structures, and Knowledge Discovery. Berlin, Heidelberg: Springer; 2015. Effect of hundreds sequenced genomes on the classification of human papillomaviruses. [Google Scholar]
- 42.Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9. doi: 10.1016/j.virol.2010.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol. 2007;13(1):14–21. doi: 10.3748/wjg.v13.i1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44(Database issue):D7–19. doi: 10.1093/nar/gkv1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK, Gao F, Hahn BH, Kalish ML, Kuiken C, Learn GH, Leitner T, McCutchan F, Osmanov S, Peeters M, Pieniazek D, Salminen M, Sharp PM, Wolinsky S, Korber B. HIV-1 nomenclature proposal. Science. 2000;288(5463):55–6. doi: 10.1126/science.288.5463.55d. [DOI] [PubMed] [Google Scholar]
- 46.Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V, Damond F, Robertson DL, Simon F. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15(8):871–2. doi: 10.1038/nm.2016. [DOI] [PubMed] [Google Scholar]
- 47.Gao F, Robertson DL, Carruthers CD, Morrison SG, Jian B, Chen Y, Barré-Sinoussi F, Girard M, Srinivasan A, Alashle G A, Abimiku AG, Shaw GM. Sharp PM. Hahn BH A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol. 1998;72(7):5680–98. doi: 10.1128/jvi.72.7.5680-5698.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJF, Meijer CJLM. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27. doi: 10.1056/NEJMoa021641. [DOI] [PubMed] [Google Scholar]
- 49.Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38. doi: 10.1016/j.jhep.2006.05.013. [DOI] [PubMed] [Google Scholar]
- 50.Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32. doi: 10.1038/nrg3920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lin WJ, Chen JJ. Class-imbalanced classifiers for high-dimensional data. Brief Bioinform. 2013;14(1):13–26. doi: 10.1093/bib/bbs006. [DOI] [PubMed] [Google Scholar]
- 52.Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics. 2010;11:523. doi: 10.1186/1471-2105-11-523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65. doi: 10.1016/0377-0427(87)90125-7. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The CASTOR web platform is available at http://castor.bioinfo.uqam.ca.