Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2017 Apr 12;5(4):apps.1600157. doi: 10.3732/apps.1600157

Development and characterization of EST-SSR markers in Stipa breviflora (Poaceae)1

Jing Ren 2, Zhi-Zhen Su 2, Zhen-Hua Dang 2,4, Yu Ding 2, Pei-Xuan Wang 2, Jian-Ming Niu 2,3,4
PMCID: PMC5400433  PMID: 28439477

Abstract

Premise of the study:

Stipa breviflora (Poaceae) is one of the dominant species of the desert steppe in the eastern Eurasian grasslands. Simple sequence repeat (SSR) markers were developed for use in genetic diversity studies of this species.

Methods and Results:

A total of 1954 potentially polymorphic loci were obtained by comparing transcriptome data of eight different S. breviflora individuals. We selected 81 loci to verify polymorphism and 63 loci amplified, of which 21 loci exhibited polymorphism. The number of alleles per locus varied from two to 24, the observed heterozygosity ranged from 0.083 to 0.958, and the expected heterozygosity ranged from 0.396 to 0.738.

Conclusions:

These newly identified SSR loci can be used for population genetic and landscape genetic studies of S. breviflora. In addition, 14 loci also amplified in six related Stipa species (S. grandis, S. krylovii, S. bungeana, S. aliena, S. gobica, and S. purpurea).

Keywords: microsatellite markers, Poaceae, polymorphism, Stipa breviflora, transcriptome


Stipa breviflora Griseb. (Poaceae) is one of the dominant species covering the desert steppe region of the eastern Eurasian grassland. In China, it is widely distributed in the southern Mongolia Plateau, western Ordos Plateau, northwestern Loess Plateau, Tibet Plateau, and Xinjiang Province (Zhang et al., 2009). Stipa breviflora, which is characterized by drought resistance, grazing tolerance, fine palatability, and early spring growth, serves as an indispensable forage resource for herbivores in dryland areas. Moreover, it plays an important role in both conserving soil and water and preventing desertification (Zhang et al., 2010). Stipa breviflora grassland, however, has been severely degraded by global warming and anthropogenic disturbances. Despite the ecological significance of S. breviflora, we know little about its population genetics and evolutionary biology using current technologies. The only study that has evaluated the genetic diversity of this species used RAPD markers (Zhang et al., 2012). Microsatellite (simple sequence repeat [SSR]) markers, which can be developed using genomes or transcriptomes, are powerful tools for examining population genetic diversity. SSRs are often presumed to be neutral, but can be subject to both positive and negative selection for a variety of reasons. Although we reported preliminary results on SSR development of S. breviflora (Zhao et al., 2016), a systematic and improved study is also required.

METHODS AND RESULTS

Transcriptome sequencing of eight S. breviflora individuals, collected from a wide geographic range, was conducted using Illumina HiSeq 4000 (Illumina, San Diego, California, USA). Approximately six million 150-bp reads of each individual were obtained and de novo assembled into 178,901 unigenes (>300 bp) using Trinity (Grabherr et al., 2011), with mean length of 1235 bp. SSRs were detected using MicroSAtellite Identification Tool (MISA; Thiel et al., 2003), with the criteria of 12, six, five, five, four, and four repeat units for mono-, di-, tri-, tetra-, penta-, and hexanucleotide motifs, respectively. The criteria were determined by the settings for minimum number of repeats according to the MISA software instructions. We adjusted the repeat numbers of pentanucleotide and hexanucleotide motifs on the basis of our search results for a higher number of SSR loci. A total of 29,817 SSRs were identified, with trinucleotide repeats (16,785, 62.76%) being the most common, followed by dinucleotide (7489, 28.00%), mononucleotide (3071, 10.30%), hexanucleotide (958, 3.58%), pentanucleotide (923, 3.45%), and tetranucleotide (591, 2.21%) repeats.

By comparing the transcriptome sequences, we obtained 1954 unigenes likely to contain polymorphic SSR loci. Then 81 loci demonstrating significant length variation among data for eight transcriptomes were selected. Primer3 (Untergasser et al., 2012) was used to design primer pairs with lengths of 18–21 bp amplifying product sizes ranging from 90–250 bp. We initially screened 81 primer pairs using 16 S. breviflora individuals; 63 of these loci were successfully amplified after PCR optimization. The polymorphism of these loci was tested using 24 samples from eight populations of S. breviflora (three individuals per population). Finally, we obtained 21 polymorphic expressed sequence tag–SSR (EST-SSR) markers, which were deposited into GenBank (Table 1). Polymorphism of these loci was assessed using 96 individuals from eight populations (12 individuals per population). Stipa grandis P. A. Smirn., S. krylovii Roshev., S. bungeana Trin., S. aliena Keng, S. gobica Roshev., and S. purpurea Griseb. (five individuals of each population) were used to test the cross-species amplification of polymorphic markers in S. breviflora (Appendix 1). Owing to lack of plant specimens, voucher specimens of these species could not be provided.

Table 1.

Characteristics of 21 microsatellite primers developed for Stipa breviflora.

Locus Primer sequences (5′–3′) Repeat motif Allele size (bp) Ta (°C) Fluorescent dye GenBank accession no. Putative function [Organism] E-value
SB13 F: CTTCTTGCGAGTACAGCGATTT (TC)8 137 57 HEX KY355614 PREDICTED: plasminogen activator inhibitor 1 RNA-binding protein-like [Oryza brachyantha] 4.00E-171
R: CAAACAGAGCTCAACATCACAAA
SB16 F: CAGTGGTTTTTGTTTAACAGCAG (CAA)6 148 51 TAMRA KY355615 Predicted protein [Hordeum vulgare subsp. vulgare] 1.00E-83
R: GCCCGTACCATAATTTTCTTTTT
SB21 F: ATGTACTTGGAAGAAACGAAGCA (CGG)6 94 57 FAM KY355616 Predicted protein [Hordeum vulgare subsp. vulgare] 6.00E-13
R: TGCTGTTGTGATCTACAGGTTTG
SB32 F: CAATTGTAGAGGGGTAACAACGA (TTC)5 153 57 TAMRA KY355617 Predicted protein [Hordeum vulgare subsp. vulgare] 3.00E-102
R: AGTCAGTGTGCTGCTGTCAAATA
SB35 F: CTACTGACATCCAACGTATTGAA (G)16 153 57 TAMRA KY355618 Uncharacterized protein LOC100845604 [Brachypodium distachyon] 2.00E-34
R: GAGATCAGGTTTACGAACCCC
SB40 F: GATCGCCATTGGTAGTATGTAAA (AG)9 160 57 FAM KY355619
R: TTCCTTCTTCATCCTTCCACTTG
SB42 F: TCCCTCAGAGAAAAATCAAAACA (CT)7 138 56 HEX KY355620 Uncharacterized protein LOC100826478 [Brachypodium distachyon] 3.00E-24
R: ATCATCCTGTACACCGTCGTCTA
SB43 F: AAATCCTTCCTCGCGCTC (ACC)5 152 60 TAMRA KY355621 Uncharacterized protein LOC101756208 [Setaria italica] 9.00E-100
R: CTCATCGATCTCCTCGCTTCT
SB45 F: CCGACACACACAAGATGAGC (GCG)5 111 51 FAM KY355622 Uncharacterized protein LOC100823613 [Brachypodium distachyon] 3.00E-53
R: GCTGGTGCAGGACCTCCC
SB46 F: TCCTTCTCTGTATATAAAGCCCG (CT)8 136 56 HEX KY355623 PREDICTED: NAC domain-containing protein 78 [Brachypodium distachyon] 0
R: ATGCATTTGCCTGGAATGTT
SB49 F: ACTCTCCTGCAACTCTGTGAAAG (GA)9 144 56 TAMRA KY355624
R: TAATGCAAGCATTTGGCTATACA
SB50 F: AGGAGCATCATCCTTGTCCTC (GAG)6 134 57 HEX KY355625 PREDICTED: paramyosin-like isoform X1 [Brachypodium distachyon] 2.00E-122
R: ACCGCACTTATCTCCTCTTTCTT
SB52 F: AGAAGAAGAGGAAGAAGAACCCA (GGC)6 146 57 TAMRA KY355626 Uncharacterized protein LOC101770650 [Setaria italica] 5.00E-78
R: AGATCCACCGCTCTTCCTAGT
SB53 F: GCAAAGGAACCTACGTCTTCC (GGC)6 133 59 HEX KY355627 PREDICTED: cysteine-rich receptor-like protein kinase 10 [Brachypodium distachyon] 2.00E-147
R: GAGAGGCTCATATGGCTGAAC
SB54 F: CACAAGGTACCGAAAAGGAAAG (GA)6 90 59 FAM KY355628 Hypothetical protein EUGRSUZ_C01942, partial [Eucalyptus grandis] 5.00E-11
R: ACCAACCCACTCTCTCTCTCTCT
SB55 F: AAATCTGCTCTCAGGTGGAATC (TGCGAT)4 131 54 HEX KY355629 PREDICTED: heat shock protein 82 [Brachypodium distachyon] 2.00E-13
R: AAATCAATCGCACTCGCAAT
SB57 F: AACTTGTGAAGGTTTGCAATGTC (AT)10 148 57 TAMRA KY355630 Predicted protein [Hordeum vulgare subsp. vulgare] 1.00E-37
R: AACCCAGTCACCTCTGACAACTA
SB77 F: ACTTTATTCCGCATGCTA (AAG)5 125 56 FAM KY355631 Predicted protein [Hordeum vulgare subsp. vulgare] 0
R: TTCGTTCTTTTGTCTGTG
SB78 F: TCACCATTACCCATTCGCTTCCT (GCG)5TTG(GA)10 191 60 FAM KY355632 PREDICTED: ATP synthase subunit d, mitochondrial-like [Setaria italica] 6.00E-88
R: TCATCTTCGGATCTCCTCCTCCC
SB79 F: GATGGTCCACTCATCCAGGCTGT (TC)9 235 54 FAM KY355633 RecName: Full = Thioredoxin H-type; Short = Trx-H; AltName: Full = TrxTa [Triticum aestivum] 6.00E-54
R: GTGCGTGAGAAAGAAGCGGTCCT
SB81 F: CGCTCCACTACCTTTCGTATCAC (CT)11(GT)8 194 60 FAM KY355634 Uncharacterized protein LOC100845363 [Brachypodium distachyon] 9.00E-137
R: GGAATGAATGCCTTGAGTGAGTC

Note: Ta = annealing temperature.

Genomic DNA was extracted from frozen leaf tissues using the Plant Genomic DNA Extraction Kit (Tiangen Biotech, Beijing, China). PCR amplification was performed in a reaction mixture (25 μL) containing 1 μL of template DNA (30–40 ng/μL), 0.5 μL (10 pM) of each primer, 12.5 μL of Premix Taq (TaKaRa Biotechnology Co., Dalian, Liaoning Province, China), and 10.5 μL of ddH2O. Conditions for PCR amplification were as follows: 4 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at a primer-specific annealing temperature (Table 1), 30 s at 72°C; and a final extension step at 72°C for 10 min. PCR products were first detected by 1.5% agarose gel electrophoresis to check for successful amplification. Forward primers for the 21 successfully amplified polymorphic loci were labeled with one of three different fluorescent dyes (FAM, HEX, or TAMRA) and used for amplifications with the same protocol. The labeled PCR products were analyzed on an ABI 3730 DNA Analyzer with a GeneScan 500 LIZ Size Standard (Applied Biosystems, Beijing, China). Allele sizes were called using GeneMarker version 2.6.0 (SoftGenetics, State College, Pennsylvania, USA). Number of alleles per locus, observed heterozygosity, and expected heterozygosity were calculated using GenAlEx version 6.5 (Peakall and Smouse, 2012). GENEPOP version 4.42 (Rousset, 2008) was used to measure the departure from Hardy–Weinberg equilibrium and linkage disequilibrium, and MICRO-CHECKER version 2.2.3 (van Oosterhout et al., 2004) was used to check the possibility of null alleles.

Among these 21 polymorphic loci, the total number of alleles per locus ranged from two to 24, observed heterozygosity ranged from 0.083 to 0.958, and expected heterozygosity ranged from 0.396 to 0.738. Only locus SB21 with null alleles consistently departed from Hardy–Weinberg equilibrium in all populations, and we did not detect linkage disequilibrium between any loci (Table 2). Cross-species amplification of the 21 polymorphic markers was tested in six related species, namely S. grandis, S. krylovii, S. bungeana, S. aliena, S. gobica, and S. purpurea (five individuals per population). Fourteen (66.67%) of the 21 loci successfully amplified in all tested species; the remaining loci were amplified in some species (Table 3).

Table 2.

Results of initial screening of 21 polymorphic loci identified in eight populations of Stipa breviflora.a

Wulate (N = 12) Jungar (N = 12) Gaolan (N = 12) Hainan (N = 12) Alxa (N = 12) Chifeng (N = 12) Pulan (N = 12) Hejing (N = 12) Total Mean
Locus A Ho Heb A Ho Heb A Ho Heb A Ho Heb A Ho Heb A Ho Heb A Ho Heb A Ho Heb A Ho He
SB13 4 0.08 0.57*** 3 0.08 0.54** 4 0.17 0.68*** 3 0.00 0.50*** 4 0.167 0.413* 2 0.083 0.080 1 0.000 0.000M 3 0.083 0.434** 7 0.083 0.401
SB16 5 0.83 0.68 5 0.73 0.75 6 0.67 0.74 6 0.83 0.78 5 0.583 0.774 3 0.500 0.403 3 1.000 0.622** 2 0.917 0.497* 5 0.758 0.655
SB21 3 0.75 0.66*** 4 0.67 0.69*** 4 0.75 0.69* 4 0.55 0.67* 4 0.667 0.705** 5 0.833 0.694** 2 1.000 0.500** 3 1.000 0.594** 2 0.777 0.649
SB32 7 0.67 0.75 6 0.17 0.70*** 8 0.75 0.75 11 0.67 0.81 5 0.333 0.722*** 8 0.583 0.757* 3 0.182 0.169 3 0.455 0.517 22 0.475 0.647
SB35 4 0.17 0.66*** 10 0.08 0.87*** 8 0.33 0.81*** 11 0.42 0.85*** 9 0.455 0.855*** 6 0.167 0.656*** 3 0.167 0.156 5 0.083 0.698*** 18 0.234 0.695
SB40 7 0.33 0.72*** 8 0.25 0.78*** 4 0.25 0.52** 4 0.00 0.65*** 6 0.083 0.726*** 6 0.273 0.653*** 3 0.167 0.288 5 0.083 0.649*** 13 0.180 0.623
SB42 7 0.25 0.77*** 6 0.00 0.78*** 7 0.25 0.78*** 5 0.17 0.72*** 5 0.000 0.736*** 5 0.417 0.476 2 0.091 0.087 5 0.333 0.747*** 15 0.188 0.636
SB43 3 0.25 0.34 6 0.33 0.48** 6 0.83 0.70 7 0.75 0.62 3 0.167 0.156 2 0.333 0.278 2 0.083 0.080 6 0.583 0.569 12 0.417 0.403
SB45 2 0.91 0.50* 2 0.75 0.47 2 1.00 0.50** 2 0.42 0.33 2 0.583 0.413 2 0.750 0.469 2 1.000 0.500** 2 0.083 0.080 11 0.687 0.407
SB46 11 0.67 0.88* 9 0.50 0.80*** 9 0.75 0.71 11 1.00 0.87 7 0.667 0.781 4 0.750 0.538 5 0.917 0.625 4 0.917 0.628 10 0.771 0.729
SB49 8 0.33 0.82*** 6 0.25 0.65*** 5 0.36 0.74* 8 0.42 0.84*** 8 0.250 0.844*** 4 0.250 0.538** 3 0.250 0.226 3 0.167 0.635*** 6 0.285 0.661
SB50 7 0.73 0.79 7 0.92 0.69 5 0.92 0.76 6 0.75 0.73* 9 0.750 0.712 5 0.833 0.642 3 0.833 0.542 4 1.000 0.677 8 0.841 0.692
SB52 8 0.67 0.73 7 0.83 0.79 7 0.92 0.80 9 0.75 0.77 6 0.917 0.792 7 0.667 0.701 4 0.583 0.451 5 0.833 0.632 17 0.771 0.708
SB53 7 0.92 0.81* 4 0.83 0.64 5 0.92 0.74 6 0.82 0.76** 6 0.818 0.814 6 0.917 0.819** 3 0.333 0.288 7 0.917 0.799** 20 0.809 0.709
SB54 8 0.83 0.74 5 1.00 0.67 6 1.00 0.81*** 6 1.00 0.82* 8 0.833 0.774 7 1.000 0.722** 5 1.000 0.628* 2 1.000 0.500** 16 0.958 0.708
SB55 5 0.92 0.70 4 1.00 0.73 5 0.83 0.67 6 0.58 0.69 5 0.833 0.667 5 1.000 0.704 1 0.000 0.000M 3 1.000 0.611** 12 0.771 0.596
SB57 9 0.75 0.82 7 0.42 0.48 9 0.67 0.84* 9 0.73 0.85* 8 1.000 0.726 8 0.583 0.698* 4 0.333 0.295 7 0.500 0.663* 11 0.622 0.671
SB77 5 0.58 0.63 5 0.73 0.73 5 0.75 0.60 6 0.92 0.78 6 0.833 0.688 4 0.917 0.705 3 0.833 0.517 3 0.917 0.538* 19 0.810 0.647
SB78 4 0.27 0.68** 5 0.08 0.57*** 2 0.17 0.15 6 0.08 0.72*** 4 0.000 0.514 4 0.083 0.295** 2 0.083 0.080 2 0.000 0.153* 11 0.097 0.396
SB79 8 0.67 0.83 4 0.92 0.74 7 0.92 0.80 13 1.00 0.85 10 0.917 0.837 8 0.917 0.753* 3 0.833 0.517 3 1.000 0.580* 18 0.896 0.738
SB81 6 0.42 0.64* 8 0.33 0.82*** 8 0.67 0.67 14 0.92 0.90 7 0.583 0.778 7 0.583 0.705 7 0.545 0.459 6 0.417 0.476 24 0.558 0.681

Note: A = total number of alleles; He = expected heterozygosity; Ho = observed heterozygosity; N = total number of samples analyzed.

a

Locality information is provided in Appendix 1.

b

Asterisks indicate significant deviation from Hardy–Weinberg equilibrium (*P < 0.05, **P < 0.01, ***P < 0.001); M = monomorphic.

Table 3.

Cross-species amplification results of 21 polymorphic EST-SSR loci developed for Stipa breviflora in six other Stipa species.a

Locus S. grandis S. aliena S. bungeana S. gobica S. krylovii S. purpurea
SB13 1 1 1 1 1 1
SB16 1 1 1 1 1 1
SB21 1 1 1 1 1 1
SB32 1 1 1 1 1 1
SB35 0 0 0 1 0 0
SB40 1 1 1 1 1 1
SB42 1 1 1 1 1 1
SB43 1 0 1 1 1 0
SB45 0 0 1 0 0 1
SB46 1 1 1 1 1 1
SB49 1 1 1 1 1 1
SB50 0 1 1 1 1 1
SB52 0 0 1 0 0 0
SB53 1 1 1 1 1 1
SB54 1 1 1 1 1 1
SB55 0 0 1 1 0 0
SB57 1 1 1 1 0 0
SB77 1 1 1 1 1 1
SB78 1 1 1 1 1 1
SB79 1 1 1 1 1 1
SB81 1 1 1 1 1 1

Note: 1 = successful amplification; 0 = failed amplification.

a

Locality information is provided in Appendix 1.

CONCLUSIONS

This is the first known report of 21 polymorphic EST-SSRs for S. breviflora. These SSRs will be used to evaluate impacts of isolation by distance and recent habitat fragmentation on the genetic diversity and structure of S. breviflora populations. These SSRs may also be used in investigations of genetic diversity of other Stipa L. species. Hodel et al. (2016) indicate that microsatellites generated from transcriptomes could likely be found in translated regions of the genome. The majority of loci favored in translated regions are trinucleotide repeats (Hodel et al., 2016). Markers occurring in or near coding regions are prone to selective pressures (Morgante et al., 2002), which casts doubt on the application of microsatellites in genetic diversity analysis. However, one study about Glycine Willd. and Oenothera L. demonstrates that many trinucleotide repeats linked closely to translated regions are not themselves within a translated region of a gene (Hodel et al., 2016); therefore, these loci are potentially useful. In our study, 21 SSRs were derived from transcriptome data, and a significant number of these loci (11/21) were or contained trinucleotide or hexanucleotide repeats. Therefore, we suggest that all 21 loci could be used to examine genetic diversity while neutrality is tested. Researchers investigating selection should use the 11 loci with trinucleotide repeats.

Appendix 1.

Location information for populations of Stipa breviflora and six other Stipa species used in this study.a

Species Collection locality Altitude (m) Geographic coordinates N
Stipa breviflora Griseb. Wulate Middle Banner, Inner Mongolia 1321 41°29′28.63″N, 108°57′17.64″E 12
S. breviflora Jungar, Inner Mongolia 1160 39°46′8.43″N, 110°57′25.91″E 12
S. breviflora Gaolan, Gansu 1784 36°15′55.94″N, 103°48′44.18″E 12
S. breviflora Hainan, Qinghai 2956 36°18′59.32″N, 100°33′43.37″E 12
S. breviflora Alxa, Inner Mongolia 1461 39°50′39.65″N, 105°03′34.30″E 12
S. breviflora Chifeng, Inner Mongolia 576 42°38′22.48″N, 119°12′14.24″E 12
S. breviflora Pulan, Tibet 3863 30°16′33.28″N, 81°10′11.19″E 12
S. breviflora Hejing, Xinjiang 2141 42°54′05.90″N, 86°17′56.83″E 12
S. aliena Keng Haibei, Qinghai 3201 101°19′31.3″N, 37°36′38.9″E 5
S. bungeana Trin. Hohhot, Inner Mongolia 1040 40°47′24.11″N, 111°28′7.28″E 5
S. gobica Roshev. Wuhai, Inner Mongolia 1599 39°37′51.50″N, 106°53′43.77″E 5
S. grandis P. A. Smirn. Manzhouli, Inner Mongolia 659 49°33′01″N, 117°33′59″E 5
S. krylovii Roshev. Hulunbuir, Inner Mongolia 930 47°51′58″N, 115°46′48″E 5
S. purpurea Griseb. Tianjun, Qinghai 3195 37°12′40.2″N, 98.55′31.4″E 5

Note: N = numbers of individuals sampled.

a

Voucher specimens were not collected at the time of the study.

LITERATURE CITED

  1. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hodel R. G. J., Gitzendanner M. A., Germain-Aubrey C. C., Liu X., Crowl A. A., Sun M., Landis J. B., et al. 2016. A new resource for the development of SSR markers: Millions of loci from a thousand plant transcriptomes. Applications in Plant Sciences 4: 1600024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Morgante M., Hanafey M., Powell W. 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30: 194–200. [DOI] [PubMed] [Google Scholar]
  4. Peakall R., Smouse P. E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics (Oxford, England) 28: 2537–2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rousset F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106. [DOI] [PubMed] [Google Scholar]
  6. Thiel T., Michalek W., Varshney R. K., Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422. [DOI] [PubMed] [Google Scholar]
  7. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., Rozen S. G. 2012. Primer3–New capabilities and interfaces. Nucleic Acids Research 40: e115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. van Oosterhout C., Hutchinson W. F., Wills D. P. M., Shipley P. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538. [Google Scholar]
  9. Zhang Q., Niu J. M., Dong J. J., Ding Y., Wang F. L., Guo J., Zhao L. Q. 2009. Floristic study of spermatophyte on Stipa breviflora steppe distributed in Inner Mongolia. Journal of Desert Research 29: 451–456. [Google Scholar]
  10. Zhang Q., Niu J. M., Ding Y., Kang S., Dong J. J. 2010. Current research advances and future prospects of biology and ecology of Stipa breviflora. Chinese Journal of Grassland 32: 93–101. [Google Scholar]
  11. Zhang Q., Niu J. M., Wu S. B., Dong J. J. 2012. Impact of climatic factors on genetic diversity of Stipa breviflora populations in Inner Mongolia. Genetics and Molecular Research 11: 2081–2093. [DOI] [PubMed] [Google Scholar]
  12. Zhao L., Dang Z. H., Zhao Y. N., Zhang Y., Niu J. M., Ren J., Zhou J. M. 2016. Optimization of SSR-PCR reaction system and primers screening in Stipa breviflora. Journal of Inner Mongolia University 47: 58–64. [Google Scholar]

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES