Abstract
Activation of beta-adrenergic or muscarinic acetylcholine receptors expressed in transfected cells or epidermal growth factor receptors in human keratinocytes produces 15% to 200% changes in cellular metabolic rates. Changes in cell metabolism were monitored continuously with a previously described silicon-based microphysiometer that detects small changes in extracellular pH. The amplitude and kinetics of the metabolic changes depend upon several factors including pretreatment of the cells prior to receptor stimulation, the dose of hormone/neurotransmitter used, and the receptor complement of the cells. Responses are receptor specific; cells transfected with receptor genes respond only to the appropriate hormone/transmitter, whereas control (nontransfected) cells or cells transfected with different receptors exhibit no response. The specificity of the responses was further documented by using pharmacological antagonists. In Chinese hamster ovary (CHO) cells transfected with human beta 2-adrenergic receptors, isoproterenol produces a 20-60% increase in the rate of extracellular acidification with an EC50 of 4 nM, a response that is competitively antagonized by (-)-propranolol. The EC50 for the isoproterenol response is shifted from 4 nM to 100 nM in the presence of 3 nM (-)-propranolol. The kinetics of the metabolic response induced by beta-adrenergic receptor stimulation are markedly slower than those elicited by muscarinic receptor agonists. The maximal metabolic response in cells transfected with beta-adrenergic receptors peaks at approximately 12 min as compared with less than 30 sec in cells transfected with muscarinic receptors, perhaps reflecting activation of different second-messenger pathways. These findings illustrate an alternative means of studying cellular responses to hormones and neurotransmitters and suggest that metabolic changes will be generally useful for detecting the consequences of receptor-ligand interactions.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashkenazi A., Ramachandran J., Capon D. J. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature. 1989 Jul 13;340(6229):146–150. doi: 10.1038/340146a0. [DOI] [PubMed] [Google Scholar]
- Chung F. Z., Lentes K. U., Gocayne J., Fitzgerald M., Robinson D., Kerlavage A. R., Fraser C. M., Venter J. C. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors. FEBS Lett. 1987 Jan 26;211(2):200–206. doi: 10.1016/0014-5793(87)81436-9. [DOI] [PubMed] [Google Scholar]
- Chung F. Z., Wang C. D., Potter P. C., Venter J. C., Fraser C. M. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem. 1988 Mar 25;263(9):4052–4055. [PubMed] [Google Scholar]
- Conklin B. R., Brann M. R., Buckley N. J., Ma A. L., Bonner T. I., Axelrod J. Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8698–8702. doi: 10.1073/pnas.85.22.8698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotecchia S., Kobilka B. K., Daniel K. W., Nolan R. D., Lapetina E. Y., Caron M. G., Lefkowitz R. J., Regan J. W. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990 Jan 5;265(1):63–69. [PubMed] [Google Scholar]
- Diamond I., Legg A., Schneider J. A., Rozengurt E. Glycolysis in quiescent cultures of 3T3 cells. Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization. J Biol Chem. 1978 Feb 10;253(3):866–871. [PubMed] [Google Scholar]
- Farnararo M., Vasta V., Bruni P., D'Alessandro A. The effect of insulin on Fru-2,6-P2 levels in human fibroblasts. FEBS Lett. 1984 Jun 4;171(1):117–120. doi: 10.1016/0014-5793(84)80470-6. [DOI] [PubMed] [Google Scholar]
- Fraser C. M., Arakawa S., McCombie W. R., Venter J. C. Cloning, sequence analysis, and permanent expression of a human alpha 2-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation. J Biol Chem. 1989 Jul 15;264(20):11754–11761. [PubMed] [Google Scholar]
- Fraser C. M., Chung F. Z., Venter J. C. Continuous high density expression of human beta 2-adrenergic receptors in a mouse cell line previously lacking beta-receptors. J Biol Chem. 1987 Nov 5;262(31):14843–14846. [PubMed] [Google Scholar]
- Fraser C. M., Wang C. D., Robinson D. A., Gocayne J. D., Venter J. C. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol. 1989 Dec;36(6):840–847. [PubMed] [Google Scholar]
- Hafeman D. G., Parce J. W., McConnell H. M. Light-addressable potentiometric sensor for biochemical systems. Science. 1988 May 27;240(4856):1182–1185. doi: 10.1126/science.3375810. [DOI] [PubMed] [Google Scholar]
- Harris S. I., Balaban R. S., Barrett L., Mandel L. J. Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell. J Biol Chem. 1981 Oct 25;256(20):10319–10328. [PubMed] [Google Scholar]
- Hen R., Axel R., Obici S. Activation of the beta 2-adrenergic receptor promotes growth and differentiation in thyroid cells. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4785–4788. doi: 10.1073/pnas.86.12.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S. V., Barker J. L., Bonner T. I., Buckley N. J., Brann M. R. Electrophysiological characterization of cloned m1 muscarinic receptors expressed in A9 L cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4056–4060. doi: 10.1073/pnas.85.11.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai J., Mei L., Roeske W. R., Chung F. Z., Yamamura H. I., Venter J. C. The cloned murine M1 muscarinic receptor is associated with the hydrolysis of phosphatidylinositols in transfected murine B82 cells. Life Sci. 1988;42(24):2489–2502. doi: 10.1016/0024-3205(88)90348-7. [DOI] [PubMed] [Google Scholar]
- Mei L., Lai J., Roeske W. R., Fraser C. M., Venter J. C., Yamamura H. I. Pharmacological characterization of the M1 muscarinic receptors expressed in murine fibroblast B82 cells. J Pharmacol Exp Ther. 1989 Feb;248(2):661–670. [PubMed] [Google Scholar]
- Moolenaar W. H., Bierman A. J., Tilly B. C., Verlaan I., Defize L. H., Honegger A. M., Ullrich A., Schlessinger J. A point mutation at the ATP-binding site of the EGF-receptor abolishes signal transduction. EMBO J. 1988 Mar;7(3):707–710. doi: 10.1002/j.1460-2075.1988.tb02866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parce J. W., Owicki J. C., Kercso K. M., Sigal G. B., Wada H. G., Muir V. C., Bousse L. J., Ross K. L., Sikic B. I., McConnell H. M. Detection of cell-affecting agents with a silicon biosensor. Science. 1989 Oct 13;246(4927):243–247. doi: 10.1126/science.2799384. [DOI] [PubMed] [Google Scholar]
- Schlessinger J. Allosteric regulation of the epidermal growth factor receptor kinase. J Cell Biol. 1986 Dec;103(6 Pt 1):2067–2072. doi: 10.1083/jcb.103.6.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider J. A., Diamond I., Rozengurt E. Glycolysis of quiescent cultures of 3T3 cells. Addition of serum, epidermal growth factor, and insulin increases the activity of phosphofructokinase in a protein synthesis-independent manner. J Biol Chem. 1978 Feb 10;253(3):872–877. [PubMed] [Google Scholar]