Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2017 Apr;15(3):417–423. doi: 10.2174/1570159X14666160715165648

Antidepressant-induced Dopamine Receptor Dysregulation: A Valid Animal Model of Manic-Depressive Illness

Francesca Demontis 1, Francesca Serra 2, Gino Serra 1,*
PMCID: PMC5405612  PMID: 28503114

Abstract

Background: Mania seems to be associated with an increased dopamine (DA) transmission. Antidepressant treatments can induce mania in humans and potentiated DA transmission in animals, by sensitizing DA D2 receptors in the mesolimbic system. We have suggested that the sensitization of D2 receptors may be responsible of antidepressant-induced mania. This review aims to report the experimental evidence that led to the hypothesis that antidepressant-induced DA receptors dysregulation can be considered an animal model of bipolar disorder.

Methods: We reviewed papers reporting preclinical and clinical studies on the role of DA in the mechanism of action of antidepressant treatments and in the patho-physiology of mood disorders.

Results: A number of preclinical and clinical evidence suggests that mania could be associated with an increased DA activity, while a reduced function of this neurotransmission might underlie depression. Chronic treatment with imipramine induces a sensitization of DA D2 receptors in the mesolimbic system, followed, after drug discontinuation, by a reduced sensitivity associated with an increased immobility time in forced swimming test of depression (FST). Blockade of glutamate NMDA receptors by memantine administration prevents the imipramine effect on DA receptors sensitivity and on the FST.

Conclusion: We suggest that chronic treatment with antidepressants induces a behavioural syndrome that mimics mania (the sensitization of DA receptors), followed by depression (desensitization of DA receptors and increased immobility time in the FST), i.e. an animal model of bipolar disorder. Moreover the observation that memantine prevents the “bipolar-like” behavior, suggests that the drug may have an antimanic and mood stabilizing effect. Preliminary clinical observations support this hypothesis.

Keywords: Animal models, bipolar disorder, depression, mania, memantine, mood stabilizer

INTRODUCTION

Animal models of mental disorders have been widely used and play an essential role in drug discovery and in the search for the neurobiological substrate of psychiatric disorders. The majority of available animal models of mood disorders meet the Geyer and Markou [2] criteria (etiological, behavioural and neurobiological correspondence to human disorder, and sensitivity to treatments effective in the human condition) for animal model of behavioral disorders.

Face validity: animal behavior mimics that of human illness. The correspondence of neurobiological changes in the human disorder to those found in the animal model (construct). Etiological validity requires that the causes of the human condition, when etiology can be established, should be the same of the condition induced in the animal. Unfortunately, the causes of psychiatric disorders are still to be clarified. Hence, this validity subtype is limited to hypotheses regarding the possible etiology of psychiatric disorders. Finally, predictive validity regards the ability of the animal model to predict the efficacy of a drug in the corresponding human disorder (i.e., a drug active in an animal model of depression should be effective in treating human depression).

However, in spite of the availability of a great number of animal models of depression [3] and mania [4], in the last few decades, no really important therapeutic innovation has been introduced in the field of psychopharmacotherapy, but the market has been flooded with only “me too drugs”; this is particularly true for bipolar disorders [5].

Indeed, several decades after the serendipitous discovery of antidepressants, antipsychotics ,and lithium, no clinically relevant innovation (as defined by Motola et al. [6]) has been introduced in the last 60 years.

With regard to the main aim of drug treatment of bipolar disorders, the ability to prevent both the hypomanic/manic and depressive recurrences of the manic-depressive illness has been clearly demonstrated only for lithium [5].

We have recently implemented in our laboratory an animal model of bipolar disorder that showed etiological, face, construct, and predictive validity. In fact, the condition in the model is induced by antidepressants, which can 
trigger mania and a rapid cycling course in human bipolar disorder. In this model, increased dopaminergic activity is followed by hypoactivity; the behavioral syndrome consists of increased sexual activity and aggression, followed by depressive-like behavior, and is prevented by NMDA receptor antagonists, including memantine. This paper will deal with this model.

ANTIDEPRESSANTS INDUCE MANIA

The ability of antidepressants to induce mania has been described soon after their introduction in clinical practice. The pioneers of the clinical use of both the tricyclic antidepressant (TCA), imipramine, Roland Kuhn [7] and of the monoamine oxidase inhibitor (MAOI), iproniazide, George Crane [8] recognized their mood-switching properties soon after having introduced these drugs in clinical practice. The clinical evidence accumulated in the last 60 years clearly indicates that all drugs used in the therapy of depression may produce a manic/hypomanic episode, either in patients with bipolar depression and with major depressive disorder. The frequency reported by different studies varies from 10% to 70% [9]. Recently an incidence of 12.5% has been suggested [9]. The same authors also found that mood stabilizer drugs failed to prevent the mania/hypomania in pharmacologically treated depressed patients.

Antidepressant-induced mania is considered to be the trigger leading to the malignant, continuous/rapid-cycling course of bipolar disorder. This change in the course of the disorder was first reported by Koukopoulos et al. in 1980 [10] and has been confirmed by a number of reports in the last few decades.

The Koukopoulos group proposed that antidepressants can induce a rapid cycle course of bipolar disorder by activating a latent hypomanic status [1, 11]. In 2008, Ghaemi [12] suggested to consider antidepressants as mood destabilizers, i.e., as drugs with an opposite effect to mood stabilizers, because of their ability to induce mania and trigger a very severe course of manic-depressive illness.

DOPAMINE, MANIA/HYPOMANIA AND DEPRESSION

The main clinical evidence of the correlation of manic syndromes and a stimulation of dopamine activity is the observation that amphetamine, which increases dopamine transmission in the CNS, can induce euphoria, hypomania, mania without psychotic symptoms, and mania with psychotic symptoms in a dose-related manner [13]. On the other hand, antipsychotic agents, which usually block dopamine receptors, are the most potent drugs in reducing acute mania symptoms [14].

In the last 50 years many studies have demonstrated an increased dopamine transmission during mania and decreased dopamine transmission during depression [15-20].

The stimulation of dopamine receptors can induce or worsen a manic syndrome [21,22]. Drugs of abuse share the ability to induce euphoria in humans [23-25] and to increase dopamine release in the mesolimbic system [26,27]; the latter plays an essential role in the process of reward [28,29], which seems to be hyperactive in mania and hypoactive during depression [29].

Dopamine D2 receptors have been shown to be increased in bipolar disorders with psychotic symptoms [30, 31]. Beyond the classical biogenic amine hypothesis of depression, which postulates reduced intrasynaptic concentration of serotonin and norepinephrine [32], a convincing comple-
mentary hypothesis has been advanced proposing dopamine hypofunction [33-36].

The supposed therapeutic mechanism of TCAs is the blockade of serotonin and norepinephrine reuptake that increases the concentrations of the two neurotransmitters in the synaptic cleft [37], but as we previously showed for imipramine and amitriptyline, but also for the tetracyclic mianserin, they also increase dopamine function through dopamine autoreceptor hyposentization [38], whereas the prevalently norepinephrine transporter inhibitor TCA desipramine chronically supersensitized the postsynaptic dopamine receptor [39], thus potentiating dopaminergic transmission. The mechanism of MAOIs is the inhibition of monoamine oxidase, an enzyme blocking the metabolic breakdown of norepinephrine and serotonin, but also of dopamine, ensuing in an intrasynaptic elevation of the concentrations of all three biogenic amines [40]. Taken together, these data suggest that a reduction of monoaminergic activity could lead to underlying depression.

On the other hand, reserpine depletes not only noradrenaline and serotonin neurons, but also dopaminergic neurons [41, 42], and its administration results in depression [41, 42].

A number of animal models of depression are associated with decreased dopaminergic activity and anhedonia-like behavior [43-46]. Antidepressant treatments reversed both dopaminergic hypoactivity and anhedonia-like behavior [46-51], suggesting that dopamine-targeting drugs should be indicated for depressive episodes with marked anhedonia [51]. Parkinson’s disease, which is caused by nigro-striatal dopaminergic neurodegeneration, is often associated (with prevalence rates ranging from 50 per cent [52] to 75 per cent [53]) with depression. Finally, a similar condition can be observed in animals with mesolimbic dopaminergic lesions [54].

EFFECT OF ANTIDEPRESSANT ON DOPAMINERGIC ACTIVITY

In our first report [38], we showed a reduced sensitivity of dopamine receptors mediating sedation/reduced motor activity (presynaptic or autoreceptors) after 10 days of antidepressant administration. Moreover, the stimulation of motor activity by apomorphine was potentiated. On the basis of these observations we suggested that antidepressants potentiate dopamine activity by reducing the sensitivity of autoreceptors, and that this effect may contribute either in their therapeutic action and in their ability to induce manic syndromes.

Different studies [55-63] aimed at evaluating the ability of antidepressant drugs to desensitize dopamine autoreceptors have reported contrasting data. On the other hand, a large body of studies have confirmed the ability of treatments used in the therapy of depression to induce a behavioural super-
sensitivity of postsynaptic dopamine receptors, particularly in the mesolimbic system [39, 64-72].

This sensitization is selective for dopamine D2 receptors, while the stimulation of D1 receptors was not influenced [67].

In keeping with these observations [65-72], the increased dopaminergic transmission secondary to D2 receptor sensitization in the mesolimbic system (where conventionally we locate the reward system) induced by antidepressants, may be viewed as contributing to alleviate the sympto-
matology of depression, in particular that of inhibited depression [65-72]. Furthermore, the same effect may be involved in the induction of mania/hypomania and in the worsened of the bipolar disorder course [65, 67, 69, 70, 73-76]. Interesting, antidepressant-induced mania seems to be associated with increased protein kinase C (PKC) activity [77]. Finally, we observed increased sexual activity [78, 79] and aggressivity [unpublished results] in rats that may match some symptoms observed during mania in humans.

ANTIDEPRESSANTS INDUCE BIPOLAR-LIKE BEHAVIOR

In 2003-04 we observed that the dopamine receptor sensitization obtained through chronic imipramine treatment, present during and 24h after imipramine withdrawal, was followed after 15-30 days of imipramine withdrawal by a reduction of dopamine receptor sensitivity and a behavioural syndrome similar to depression [80, 81].

Based on these results we can speculate that the increased sensitivity of dopamine receptors may be responsible for the antidepressant-induced mania [73-76, 82-84] (that has been observed in humans receiving antidepressant drugs), and that depression could be the consequence of a reduced sensitivity of these receptors [76, 81].

Thus, chronic imipramine treatment produces a bipolar-like behavior.

These findings provide a neurobiological evidence of Koukopoulos’ hypothesis, that antidepressant drugs, by inducing mania, worsened the course of bipolar disorders.

THE SENSITIZATION PHENOMENON AND THE ROLE OF NMDA RECEPTORS

Blockade of NMDA receptors prevents the sensitization of amphetamine [85-90], methylphenidate [91], cocaine [92-95], apomorphine [96, 97] and other dopamine agonists [98,99], nicotine [100], morphine [101, 102], ethanol [103-105], immobilization [88] and social defeat stress [106]. It should be remembered that behavioral sensitization to psychostimulants is an animal model of mania and psychosis [107] and is used to screen for antipsychotic/antimanic drugs.

THE ROLE OF NMDA RECEPTORS IN ANTIDEPRESSANT TREATMENT-INDUCED DOPAMINE RECEPTOR SENSITIZATION

We have demonstrated that the noncompetitive NMDA antagonists MK-801 (dizocilpine) or memantine [82, 108, 109] completely prevents imipramine- or electroconvulsive shock-induced dopamine receptor sensitization.

On the contrary, in keeping with clinical observations showing that conventional mood stabilizers are unable to prevent antidepressant-induced mania, the administration of lithium [110], carbamazepine [83], valproate [84], and lamotrigine (unpublished results) failed to prevent imipramine-induced dopamine receptor sensitization in rats.

Memantine prevented both the imipramine-induced sensitization and the reduced sensitivity of dopamine receptors associated with the increase of immobility time in forced swimming test [109], suggesting that it may represent a potential antimanic and mood-stabilizing agent.

On the basis of these observations, we suggested the use of memantine in the treatment of mania/hypomania and in the long-term prophylaxis of manic-depressive illness.

MEMANTINE: A NEW ANTIMANIC AND MOODSTABILIZING DRUG

Two 6- and 12-month clinical trials provided evidence of acute antimanic and a sustained prophylactic effect of memantine, used as augmenting agent in treatment resistant bipolar disorders [111, 112]. Keck et al. [113] have shown the efficacy of the drug in the treatment of mania. Furthermore, beneficial effects of memantine monotherapy have been observed in individual BD patients, including those whose lithium treatment was discontinued [114-117].

Particularly interesting are the results of our 3-year clinical trial [118]. Indeed, we found that the administration of memantine produces a statistically significant and clinically relevant improvement of treatment-resistant bipolar disorder (reduced illness episodes number, severity and duration).

Interestingly, patients without free interval showed the most marked improvement as an observation consistent with our model of bipolar disorder, which simulates a continuous circular course of the disorder, is being resistant to available mood stabilizers.

CONCLUSION

Antidepressant treatments can induce mania and change the natural course of manic depressive illness in humans. We have shown in rats that such treatments by inducing behavioral supersensitivity of the dopaminergic system induce mania-like behavioral responses, and this is followed by reduced sensitivity of these receptors and a behavior that mimics human depression. The antidepressant-induced dopamine receptors dysregulation represents a useful animal model of bipolar disorder with continuous/rapid cycle course, i.e., a malignant course that is often resistant to currently available treatments.

The model is sensitive to memantine, which seems to be a promising drug for the treatment of mania and for the long-lasting prophylaxis of treatment-resistant manic-depressive illness.

ACKNOWLEDGEMENTS

This study has been supported by Fondazione Banco di Sardegna, Italy. The authors thank Denis Greenan for his important contribution to the drafting of this report.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

REFERENCES

  • 1.Tondo L., Laddomada P., Serra G., Minnai G., Kukopulos A. Rapid cyclers and antidepressants. Int. Pharmacopsychiatry. 1981;16(2):119–123. doi: 10.1159/000468483. [PMID: 7333788]. [DOI] [PubMed] [Google Scholar]
  • 2.Geyer M., Markou A. Animal models of psychiatric disorders. In: Bloom F., Kupfer D., editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press; 1995. pp. 787–798. [Google Scholar]
  • 3.McArthur R., Borsini F. Animal models of depression in drug discovery: a historical perspective. Pharmacol. Biochem. Behav. 2006;84(3):436–452. doi: 10.1016/j.pbb.2006.06.005. [http://dx.doi.org/10.1016/j.pbb.2006.06. 005]. [PMID: 16844210]. [DOI] [PubMed] [Google Scholar]
  • 4.Logan R.W., McClung C.A. Logan, R.W.; McClung, C.A. Animal models of bipolar mania: The past, present and future. Neuroscience, 2015. S0306-4522(15)00773-3. [DOI] [PMC free article] [PubMed]
  • 5.Serra G., Demontis F., Serra G.A. Serra, G.; Demontis, F.; Serra, G.A. The urgent need of new mood stabilizers: the promising results of memantine. A Bipolar Disorder: Open Access, 2015;1(1) 1000e102. [Google Scholar]
  • 6.Motola D., De Ponti F., Rossi P., Martini N., Montanaro N. Therapeutic innovation in the European Union: analysis of the drugs approved by the EMEA between 1995 and 2003. Br. J. Clin. Pharmacol. 2005;59(4):475–478. doi: 10.1111/j.1365-2125.2004.02320.x. [http://dx.doi.org/10.1111/j. 1365-2125.2004.02320.x]. [PMID: 15801943]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kuhn R. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am. J. Psychiatry. 1958;115(5):459–464. doi: 10.1176/ajp.115.5.459. [http://dx.doi.org/10.1176/ajp.115.5.459]. [PMID: 13583250]. [DOI] [PubMed] [Google Scholar]
  • 8.Crane G.E. The psychiatric side-effects of iproniazid. Am. J. Psychiatry. 1956;112(7):494–501. doi: 10.1176/ajp.112.7.494. [http://dx.doi.org/10.1176/ajp. 112.7.494]. [PMID: 13283130]. [DOI] [PubMed] [Google Scholar]
  • 9.Tondo L., Vázquez G., Baldessarini R.J. Mania associated with antidepressant treatment: comprehensive meta-analytic review. Acta Psychiatr. Scand. 2010;121(6):404–414. doi: 10.1111/j.1600-0447.2009.01514.x. [http://dx.doi.org/10. 1111/j.1600-0447.2009.01514.x]. [PMID: 19958306]. [DOI] [PubMed] [Google Scholar]
  • 10.Kukopulos A., Reginaldi D., Laddomada P., Floris G., Serra G., Tondo L. Course of the manic-depressive cycle and changes caused by treatment. Pharmakopsychiatr. Neuropsychopharmakol. 1980;13(4):156–167. doi: 10.1055/s-2007-1019628. [PMID: 6108577]. [DOI] [PubMed] [Google Scholar]
  • 11.Kukopulos A., Caliari B., Tundo A., Minnai G., Floris G., Reginaldi D., Tondo L. Rapid cyclers, temperament, and anti- depressants. Compr. Psychiatry. 1983;24(3):249–258. doi: 10.1016/0010-440x(83)90076-7. [http://dx. doi.org/10.1016/0010-440X(83)90076-7]. [PMID: 6872538]. [DOI] [PubMed] [Google Scholar]
  • 12.Ghaemi S.N. Treatment of rapid-cycling bipolar disorder: are antidepressants mood destabilizers? Am. J. Psychiatry. 2008;165(3):300–302. doi: 10.1176/appi.ajp.2007.07121931. [http://dx.doi.org/10.1176/appi.ajp.2007.07121931]. [PMID: 18316425]. [DOI] [PubMed] [Google Scholar]
  • 13.O’Brien C.P. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th Edition; Laurence L. Brunton; Bruce A. Chabner; Björn C. Knollmann, Eds; New York: McGraw Hill:; 2011. Drug addiction. pp. 649–668. [Google Scholar]
  • 14.Meyer J.M. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th Edition; Laurence L. Brunton; Bruce A. Chabner; Björn C. Knollmann, Eds; New York: McGraw Hill:; 2011. Pharmacotherapy of psychosis and mania. [Google Scholar]
  • 15.Cousins D.A., Butts K., Young A.H. The role of dopamine in bipolar disorder. Bipolar Disord. 2009;11(8):787–806. doi: 10.1111/j.1399-5618.2009.00760.x. [http://dx. doi.org/10.1111/j.1399-5618.2009.00760.x]. [PMID: 19922550]. [DOI] [PubMed] [Google Scholar]
  • 16.Berk M., Dodd S., Kauer-Santanna M., Malhi G.S., Bourin M., Kapczinski F., Norman T. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. Suppl. 2007;116(434):41–49. doi: 10.1111/j.1600-0447.2007.01058.x. [http://dx.doi.org/
10.1111/j.1600-0447.2007.01058.x]. [PMID: 17688462]. [DOI] [PubMed] [Google Scholar]
  • 17.Diehl D.J., Gershon S. The role of dopamine in mood disorders. Compr. Psychiatry. 1992;33(2):115–120. doi: 10.1016/0010-440x(92)90007-d. [http://dx.doi.org/10. 1016/0010-440X(92)90007-D]. [PMID: 1347497]. [DOI] [PubMed] [Google Scholar]
  • 18.Dunlop B.W., Nemeroff C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry. 2007;64(3):327–337. doi: 10.1001/archpsyc.64.3.327. [http://dx.doi.org/10.1001/archpsyc.64.3.327]. [PMID: 17339521]. [DOI] [PubMed] [Google Scholar]
  • 19.Bennabi D., Vandel P., Papaxanthis C., Pozzo T., Haffen E. Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic, and therapeutic implications. 2013. [DOI] [PMC free article] [PubMed]
  • 20.van Enkhuizen J., Geyer M.A., Halberstadt A.L., Zhuang X., Young J.W. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J. Affect. Disord. 2014;155:247–254. doi: 10.1016/j.jad.2013.08.041. [http://dx.doi.org/
10.1016/j.jad.2013.08.041]. [PMID: 24287168]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Saito S., Shioda K., Nishijima K. Dopamine dysregulation syndrome including mania related to coadministration of droxidopa. J. Clin. Psychopharmacol. 2012;32(3):428–429. doi: 10.1097/JCP.0b013e3182549243. [http://dx.doi.
org/10.1097/JCP.0b013e3182549243]. [PMID: 22561478]. [DOI] [PubMed] [Google Scholar]
  • 22.Maier F., Merkl J., Ellereit A.L., Lewis C.J., Eggers C., Pedrosa D.J., Kalbe E., Kuhn J., Meyer T.D., Zurowski M., Timmermann L. Hypomania and mania related to dopamine replacement therapy in Parkinsons disease. Parkinsonism Relat. Disord. 2014;20(4):421–427. doi: 10.1016/j.parkreldis.2014.01.001. [http://dx.doi.org/10.1016/j. parkreldis.2014.01.001]. [PMID: 24467817]. [DOI] [PubMed] [Google Scholar]
  • 23.Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94(4):469–492. [http://dx.doi.org/
10.1037/0033-295X.94.4.469]. [PMID: 3317472]. [PubMed] [Google Scholar]
  • 24.Wise R.A. The role of reward pathways in the development of drug dependence. Pharmacol. Ther. 1987;35(1-2):227–263. doi: 10.1016/0163-7258(87)90108-2. [http://
dx.doi.org/10.1016/0163-7258(87)90108-2]. [PMID: 3321101]. [DOI] [PubMed] [Google Scholar]
  • 25.Bergstrom H.C., Palmer A.A., Wood R.D., Burkhart-Kasch S., McKinnon C.S., Phillips T.J. Reverse selection for differential response to the locomotor stimulant effects of ethanol provides evidence for pleiotropic genetic influence on locomotor response to other drugs of abuse. Alcohol. Clin. Exp. Res. 2003;27(10):1535–1547. doi: 10.1097/01.ALC.0000091226.18969.B9. [http://dx.doi.org/10.1097/01.ALC.0000091226.18969.B9]. [PMID: 14574223]. [DOI] [PubMed] [Google Scholar]
  • 26.Di Chiara G., Bassareo V., Fenu S., De Luca M.A., Spina L., Cadoni C., Acquas E., Carboni E., Valentini V., Lecca D. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology. 2004;47(Suppl. 1):227–241. doi: 10.1016/j.neuropharm.2004.06.032. [http://
dx.doi.org/10.1016/j.neuropharm.2004.06.032]. [PMID: 15464140]. [DOI] [PubMed] [Google Scholar]
  • 27.Di Chiara G., Bassareo V. Reward system and addiction: what dopamine does and doesnt do. Curr. Opin. Pharmacol. 2007;7(1):69–76. doi: 10.1016/j.coph.2006.11.003. [http://dx.doi.org/10.1016/j.coph.2006.11.003]. [PMID: 17174602]. [DOI] [PubMed] [Google Scholar]
  • 28.Wise R.A., Rompre P.P. Brain dopamine and reward. Annu. Rev. Psychol. 1989;40:191–225. doi: 10.1146/annurev.ps.40.020189.001203. [http://dx.doi.org/10.1146/annurev. ps.40.020189.001203]. [PMID: 2648975]. [DOI] [PubMed] [Google Scholar]
  • 29.Wise R.A. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res. 2008;14(2-3):169–183. doi: 10.1007/BF03033808. [http://dx.doi.
org/10.1007/BF03033808]. [PMID: 19073424]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wong D.F., Pearlson G.D., Tune L.E., Young L.T., Meltzer C.C., Dannals R.F., Ravert H.T., Reith J., Kuhar M.J., Gjedde A. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J. Cereb. Blood Flow Metab. 1997;17(3):331–342. doi: 10.1097/00004647-199703000-00010. [http://dx.doi.org/10.1097/00004647-199703000-00010]. [PMID: 9119906]. [DOI] [PubMed] [Google Scholar]
  • 31.Pearlson G.D., Wong D.F., Tune L.E., Ross C.A., Chase G.A., Links J.M., Dannals R.F., Wilson A.A., Ravert H.T., Wagner H.N., Jr In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch. Gen. Psychiatry. 1995;52(6):471–477. doi: 10.1001/archpsyc.1995.03950180057008. [http://dx.doi.org/10.1001/archpsyc.1995. 03950180057008]. [PMID: 7771917]. [DOI] [PubMed] [Google Scholar]
  • 32.Garver D.L., Davis J.M. Biogenic amine hypotheses of affective disorders. Life Sci. 1979;24(5):383–394. doi: 10.1016/0024-3205(79)90208-x. [http://dx.doi.org/10. 1016/0024-3205(79)90208-X]. [PMID: 372718]. [DOI] [PubMed] [Google Scholar]
  • 33.Willner P. Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res. 1983;287(3):211–224. doi: 10.1016/0165-0173(83)90005-x. [http://dx. doi.org/10.1016/0165-0173(83)90005-X]. [PMID: 6140979]. [DOI] [PubMed] [Google Scholar]
  • 34.Willner P. Dopamine and depression: a review of recent evidence. II. Theoretical approaches. Brain Res. 1983;287(3):225–236. doi: 10.1016/0165-0173(83)90006-1. [http://
dx.doi.org/10.1016/0165-0173(83)90006-1]. [PMID: 6362771]. [DOI] [PubMed] [Google Scholar]
  • 35.Willner P. Dopamine and depression: a review of recent evidence. III. The effects of antidepressant treatments. Brain Res. 1983;287(3):237–246. doi: 10.1016/0165-0173(83)90007-3. [http://dx.doi.org/10.1016/0165-0173(83)90007-3]. [PMID: 6318882]. [DOI] [PubMed] [Google Scholar]
  • 36.Willner P., Hale A.S., Argyropoulos S. Dopaminergic mechanism of antidepressant action in depressed patients. J. Affect. Disord. 2005;86(1):37–45. doi: 10.1016/j.jad.2004.12.010. [http://dx.doi.org/10.1016/j.jad.2004.12.010]. [PMID: 15820269]. [DOI] [PubMed] [Google Scholar]
  • 37.Brodie B.B. Some ideas on the mode of action of imipraminetype antidepressants. The Scientific Basis of Drug Therapy in Psychiatry. Procedings of a Symposium at St. Bartholomew’s Hospital 7th-8th September, 1964; London: Oxford; 1965. pp. 127–146. John Marks and C.M.B. Pare, Eds.,[http://dx.doi.org/10.1016/B978-0-08-011195-7.50019-8] [Google Scholar]
  • 38.Serra G., Argiolas A., Klimek V., Fadda F., Gessa G.L. Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci. 1979;25(5):415–423. doi: 10.1016/0024-3205(79)90573-3. [http://dx.doi.org/10.1016/ 0024-3205(79)90573-3]. [PMID: 481130]. [DOI] [PubMed] [Google Scholar]
  • 39.Spyraki C., Fibiger H.C. Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. Eur. J. Pharmacol. 1981;74(2-3):195–206. doi: 10.1016/0014-2999(81)90531-8. [http://dx.doi.org/10.1016/0014-2999(81)90531-8]. [PMID: 7198991]. [DOI] [PubMed] [Google Scholar]
  • 40.Ho B.T. Monoamine oxidase inhibitors. J. Pharm. Sci. 1972;61(6):821–837. doi: 10.1002/jps.2600610602. [http://dx.doi.org/10.1002/jps.2600610602]. [PMID: 4558257]. [DOI] [PubMed] [Google Scholar]
  • 41.Bein H.J. Rauwolfia and biological psychiatry. Trends Neurosci. 1982;5:37–39. [http://dx.doi.org/10.1016/0166-2236(82)90017-0]. [Google Scholar]
  • 42.Serra G., Gessa G.L. Manuale di Psicofarmacologia. Milano: Masson; 1990. pp. 145–161. [Google Scholar]
  • 43.Venzala E., García-García A.L., Elizalde N., Tordera R.M. Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur. Neuropsychopharmacol. 2013;23(7):697–708. doi: 10.1016/j.euroneuro.2012.05.010. [http://dx.doi.org/10.1016/j.euroneuro.2012.05.010]. [PMID: 22743048]. [DOI] [PubMed] [Google Scholar]
  • 44.Papp M., Muscat R., Willner P. Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacology (Berl.) 1993;110(1-2):152–158. doi: 10.1007/BF02246965. [http://dx.doi.org/10.1007/BF02246965]. [PMID: 7870876]. [DOI] [PubMed] [Google Scholar]
  • 45.Willner P. DAquila, P.S.; Coventry, T.; Brain, P. Loss of social status: preliminary evaluation of a novel animal model of depression. J. Psychopharmacol. (Oxford) 1995;9(3):207–213. doi: 10.1177/026988119500900302. [http://dx.doi.org/10.1177/026988119500900302]. [PMID: 22297759]. [DOI] [PubMed] [Google Scholar]
  • 46.DAquila P.S.; Collu, M.; Pani, L.; Gessa, G.L.; Serra, G. Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression. Eur. J. Pharmacol. 1994;262(1-2):107–111. doi: 10.1016/0014-2999(94)90033-7. [http://dx.doi.org/10. 1016/0014-2999(94)90033-7]. [PMID: 7813561]. [DOI] [PubMed] [Google Scholar]
  • 47.Willner P., Towell A., Sampson D., Sophokleous S., Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl.) 1987;93(3):358–364. doi: 10.1007/BF00187257. [http://dx.doi.org/
10.1007/BF00187257]. [PMID: 3124165]. [DOI] [PubMed] [Google Scholar]
  • 48.DAquila P.; Monleon, S.; Borsini, F.; Brain, P.; Willner, P. Anti-anhedonic actions of the novel serotonergic agent flibanserin, a potential rapidly-acting antidepressant. Eur. J. Pharmacol. 1997;340(2-3):121–132. doi: 10.1016/s0014-2999(97)01412-x. [http://dx.doi.org/10.1016/S0014-2999(97)01412-X]. [PMID: 9537806]. [DOI] [PubMed] [Google Scholar]
  • 49.Willner P., Muscat R., Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci. Biobehav. Rev. 1992;16(4):525–534. doi: 10.1016/s0149-7634(05)80194-0. [http://dx.doi.org/10.1016/ S0149-7634(05)80194-0]. [PMID: 1480349]. [DOI] [PubMed] [Google Scholar]
  • 50.Willner P., Lappas S., Cheeta S., Muscat R. Reversal of stress-induced anhedonia by the dopamine receptor agonist, pramipexole. Psychopharmacology (Berl.) 1994;115(4):454–462. doi: 10.1007/BF02245568. [http://dx. doi.org/10.1007/BF02245568]. [PMID: 7871089]. [DOI] [PubMed] [Google Scholar]
  • 51.Argyropoulos S.V., Nutt D.J. Anhedonia revisited: is there a role for dopamine-targeting drugs for depression? J. Psychopharmacol. (Oxford) 2013;27(10):869–877. doi: 10.1177/0269881113494104. [http://dx.doi.org/10.1177/ 0269881113494104]. [PMID: 23904408]. [DOI] [PubMed] [Google Scholar]
  • 52.Zesiewicz T.A., Gold M., Chari G., Hauser R.A. Current issues in depression in Parkinsons disease. Am. J. Geriatr. Psychiatry. 1999;7(2):110–118. [PMID: 10322237]. [PubMed] [Google Scholar]
  • 53.Veazey C., Aki S.O., Cook K.F., Lai E.C., Kunik M.E. Prevalence and treatment of depression in Parkinsons disease. J. Neuropsychiatry Clin. Neurosci. 2005;17(3):310–323. doi: 10.1176/jnp.17.3.310. [http://dx. doi.org/10.1176/jnp.17.3.310]. [PMID: 16179652]. [DOI] [PubMed] [Google Scholar]
  • 54.Carvalho M.M., Campos F.L., Coimbra B., Pêgo J.M., Rodrigues C., Lima R., Rodrigues A.J., Sousa N., Salgado A.J. Behavioral characterization of the 6-hydroxidopamine model of Parkinsons disease and pharmacological rescuing of non-motor deficits. Mol. Neurodegener. 2013;8:14. doi: 10.1186/1750-1326-8-14. [http://dx.doi.org/10. 1186/1750-1326-8-14]. [PMID: 23621954]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chiodo L.A., Antelman S.M. Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature. 1980;287(5781):451–454. doi: 10.1038/287451a0. [http://dx. doi.org/10.1038/287451a0]. [PMID: 7432470]. [DOI] [PubMed] [Google Scholar]
  • 56.Chiodo L.A., Antelman S.M. Tricyclic antidepressants induce subsensitivity of presynaptic dopamine autoreceptors. Eur. J. Pharmacol. 1980;64(2-3):203–204. doi: 10.1016/0014-2999(80)90049-7. [http://dx.doi.org/10.1016/ 0014-2999(80)90049-7]. [PMID: 7398766]. [DOI] [PubMed] [Google Scholar]
  • 57.Diggory G.L., Buckett W.R. Chronic antidepressant administration fails to attenuate apomorphine-induced decreases in rat striatal dopamine metabolites. Eur. J. Pharmacol. 1984;105(3-4):257–263. doi: 10.1016/0014-2999(84)90617-4. [http://dx.doi.org/10.1016/0014-2999(84)90617-4]. [PMID: 6510470]. [DOI] [PubMed] [Google Scholar]
  • 58.Dziedzicka-Wasylewska M., Willner P., Papp M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav. Pharmacol. 1997;8(6-7):607–618. doi: 10.1097/00008877-199711000-00017. [http://dx.doi.org/10.1097/00008877-199711000-00017]. [PMID: 9832973]. [DOI] [PubMed] [Google Scholar]
  • 59.Holcomb H.H., Bannon M.J., Roth R.H. Striatal dopamine autoreceptors uninfluenced by chronic administration of anti- depressants. Eur. J. Pharmacol. 1982;82(3-4):173–178. doi: 10.1016/0014-2999(82)90507-6. [http://dx. doi.org/10.1016/0014-2999(82)90507-6]. [PMID: 6813129]. [DOI] [PubMed] [Google Scholar]
  • 60.Muscat R., Towell A., Willner P. Changes in dopamine autoreceptor sensitivity in an animal model of depression. Psychopharmacology (Berl.) 1988;94(4):545–550. doi: 10.1007/BF00212853. [http://dx.doi.org/
10.1007/BF00212853]. [PMID: 3131802]. [DOI] [PubMed] [Google Scholar]
  • 61.Serra G., Argiolas A., Fadda F., Gessa G.L. Hyposensitivity of dopamine autoreceptors induced by chronic administration of tricyclic antidepressants. Pharmacol. Res. Commun. 1980;12(6):619–624. doi: 10.1016/s0031-6989(80)80149-4. [http://dx.doi.org/10.1016/S0031-6989(80)80149-4]. [PMID: 7403234]. [DOI] [PubMed] [Google Scholar]
  • 62.Serra G., Argiolas A., Fadda F., Melis M.R., Gessa G.L. Repeated electroconvulsive shock prevents the sedative effect of small doses of apomorphine. Psychopharmacology (Berl.) 1981;73(2):194–196. doi: 10.1007/BF00429217. [http://dx.doi.org/10.1007/BF00429217]. [PMID: 6785815]. [DOI] [PubMed] [Google Scholar]
  • 63.Serra G., Melis M.R., Argiolas A., Fadda F., Gessa G.L. REM sleep deprivation induces subsensitivity of dopamine receptors mediating sedation in rats. Eur. J. Pharmacol. 1981;72(1):131–135. doi: 10.1016/0014-2999(81)90310-1. [http://dx.doi.org/10.1016/0014-2999(81)90310-1]. [PMID: 7262191]. [DOI] [PubMed] [Google Scholar]
  • 64.Collu M., Poggiu A.S., Pani L., Serra G. Fluoxetine-induced conditioned place preference: a preliminary study. Synapse. 1997;25(3):309–311. doi: 10.1002/(SICI)1098-2396(199703)25:3<309::AID-SYN11>3.0.CO;2-R. [http://dx.doi.org/10.1002/(SICI)1098-2396(199703) 25:3<309:AID-SYN11>3.0.CO;2-R]. [PMID: 9068130]. [DOI] [PubMed] [Google Scholar]
  • 65.DAquila P.S.; Collu, M.; Gessa, G.L.; Serra, G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur. J. Pharmacol. 2000;405(1-3):365–373. doi: 10.1016/s0014-2999(00)00566-5. [http://dx.doi.org/
10.1016/S0014-2999(00)00566-5]. [PMID: 11033341]. [DOI] [PubMed] [Google Scholar]
  • 66.Gershon A.A., Vishne T., Grunhaus L. Dopamine D2-like receptors and the antidepressant response. Biol. Psychiatry. 2007;61(2):145–153. doi: 10.1016/j.biopsych.2006.05.031. [http://dx.doi.org/10.1016/j.biopsych.2006.05.031]. [PMID: 16934770]. [DOI] [PubMed] [Google Scholar]
  • 67.Serra G., Collu M. DAquila, P.S.; De Montis, G.M.; Gessa, G.L. Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res. 1990;527(2):234–243. doi: 10.1016/0006-8993(90)91142-4. [http://dx. doi.org/10.1016/0006-8993(90)91142-4]. [PMID: 1979237]. [DOI] [PubMed] [Google Scholar]
  • 68.Serra G., Collu M. DAquila, P.S.; De Montis, G.M.; Gessa, G.L. Chronic imipramine reverses B-HT 920-induced hypomotility in rats. J. Neural Transm. 1991;84(3):237–240. doi: 10.1007/BF01244974. [http://dx.doi.org/
10.1007/BF01244974]. [PMID: 1652984]. [DOI] [PubMed] [Google Scholar]
  • 69.Serra G., Collu M. DAquila, P.S.; Gessa, G.L. Role of the mesolimbic dopamine system in the mechanism of action of antidepressants. Pharmacol. Toxicol. 1992;71(Suppl. 1):72–85. doi: 10.1111/j.1600-0773.1992.tb01631.x. [http://dx.doi.org/10.1111/j.1600-0773.1992.tb01631.x]. [PMID: 1480562]. [DOI] [PubMed] [Google Scholar]
  • 70.Willner P. The mesolimbic dopamine system as a target for rapid antidepressant action. Int. Clin. Psychopharmacol. 1997;12(Suppl. 3):S7–S14. doi: 10.1097/00004850-199707003-00002. [http://dx.doi.org/10.1097/00004850-199707003-00002]. [PMID: 9347387]. [DOI] [PubMed] [Google Scholar]
  • 71.Collu M., Poggiu A.S., Devoto P., Serra G. Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur. J. Pharmacol. 1997;322(2-3):123–127. doi: 10.1016/s0014-2999(97)00006-x. [http://dx.doi.org/10.1016/S0014-2999(97)00006-X]. [PMID: 9098678]. [DOI] [PubMed] [Google Scholar]
  • 72.Fibiger H.C., Phillips A.G. Increased intracranial self-stimulation in rats after long-term administration of desipramine. Science. 1981;214(4521):683–685. doi: 10.1126/science.7197394. [http://dx.doi.org/10.1126/science.7197394]. [PMID: 7197394]. [DOI] [PubMed] [Google Scholar]
  • 73.Gessa G.L., Pani L., Serra G., Fratta W. Animal models of mania. Adv. Biochem. Psychopharmacol. 1995;49:43–66. [PMID: 7653334]. [PubMed] [Google Scholar]
  • 74.Serra G., D`Aquila P.S. Do antidepressants induce mania and rapid cycling by increasing dopaminergic transmission?; 2008. [Google Scholar]
  • 75.Serra G. (Patent, 2009) Uso della memantina per il trattamento dei disturbi dell ׳umoreUso della memantina per il trattamento dei disturbi dell ׳umore N MI2009A000174. 2009.
  • 76.Serra G. (EP Patent, 2010) Memantine for treating bipolar mood disorders resistant to conventional treatments. EP 2 218 450 A1. Priority: 11.02.2009 IT MI20090174. 18.08.2010 Bulletin 2010/33. 2010.
  • 77.Szabo S.T., Machado-Vieira R., Yuan P., Wang Y., Wei Y., Falke C., Cirelli C., Tononi G., Manji H.K., Du J. Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of mania. Neuropharmacology. 2009;56(1):47–55. doi: 10.1016/j.neuropharm.2008.08.015. [http://dx.doi.org/10.1016/j.neuropharm.2008.08.015]. [PMID: 18789340]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Serra G., Fadda F., Argiolas A., Collu M., Gessa G.L. Male to male mounting behaviour induced by chronic treatment with MAO inhibitors in rats. Riv. Farmacol. Ter. 1984;15(1):23–26. [Google Scholar]
  • 79.Serra G., Argiolas A., Rossetti Z., Fadda F., Melis M.R., Gessa G.L. Sexual stimulation in male rats after chronic antidepressants.; International Symposium on Typical and Atypical Antidepressants; Taormina. 1981. [Google Scholar]
  • 80.DAquila P.S.; Peana, A.T.; Panin, F.; Grixoni, C.; Cossu, M.; Serra, G. Reversal of antidepressant-induced dopaminergic behavioural supersensitivity after long-term chronic imipramine withdrawal. Eur. J. Pharmacol. 2003;458(1-2):129–134. doi: 10.1016/s0014-2999(02)02731-0. [http://
dx.doi.org/10.1016/S0014-2999(02)02731-0]. [PMID: 12498916]. [DOI] [PubMed] [Google Scholar]
  • 81.DAquila P.S.; Panin, F.; Serra, G. Long-term imipramine withdrawal induces a depressive-like behaviour in the forced swimming test. Eur. J. Pharmacol. 2004;492(1):61–63. doi: 10.1016/j.ejphar.2004.04.008. [http://dx.doi.org/10. 1016/j.ejphar.2004.04.008]. [PMID: 15145707]. [DOI] [PubMed] [Google Scholar]
  • 82.DAquila P.S.; Collu, M.; Gessa, G.L.; Serra, G. Dizocilpine prevents the enhanced locomotor response to quinpirole induced by repeated electroconvulsive shock. Eur. J. Pharmacol. 1997;330(1):11–14. doi: 10.1016/s0014-2999(97)01019-4. [http://dx.doi.org/10.1016/S0014-2999(97)01019-4]. [PMID: 9228409]. [DOI] [PubMed] [Google Scholar]
  • 83.DAquila P.S.; Peana, A.T.; Tanda, O.; Serra, G. Carbamazepine prevents imipramine-induced behavioural sensitization to the dopamine D(2)-like receptor agonist quinpirole. Eur. J. Pharmacol. 2001;416(1-2):107–111. doi: 10.1016/s0014-2999(01)00876-7. [http://dx.doi.org/10.1016/S0014-2999 (01)00876-7]. [PMID: 11282119]. [DOI] [PubMed] [Google Scholar]
  • 84.DAquila P.S.; Panin, F.; Serra, G. Chronic valproate fails to prevent imipramine-induced behavioural sensitization to the dopamine D2-like receptor agonist quinpirole. Eur. J. Pharmacol. 2006;535(1-3):208–211. doi: 10.1016/j.ejphar.2006.02.016. [http://dx.doi.org/10.1016/j.ejphar.2006.02.016]. [PMID: 16533507]. [DOI] [PubMed] [Google Scholar]
  • 85.Battisti J.J., Shreffler C.B., Uretsky N.J., Wallace L.J. NMDA antagonists block expression of sensitization of amphetamine- and apomorphine-induced stereotypy. Pharmacol. Biochem. Behav. 2000;67(2):241–246. doi: 10.1016/s0091-3057(00)00324-5. [http://dx.doi.org/10.1016/S0091-3057(00) 00324-5]. [PMID: 11124387]. [DOI] [PubMed] [Google Scholar]
  • 86.Grönig M., Atalla A., Kuschinsky K. Effects of dizocilpine [(+)-MK-801] on the expression of associative and non-associative sensitization to D-amphetamine. Naunyn Schmiedebergs Arch. Pharmacol. 2004;369(2):228–231. doi: 10.1007/s00210-003-0855-8. [http://dx.doi.org/10.1007/ s00210-003-0855-8]. [PMID: 14673514]. [DOI] [PubMed] [Google Scholar]
  • 87.Ohmori T., Abekawa T., Muraki A., Koyama T. Competitive and noncompetitive NMDA antagonists block sensitization to methamphetamine. Pharmacol. Biochem. Behav. 1994;48(3):587–591. doi: 10.1016/0091-3057(94)90318-2. [http://dx.doi.org/10.1016/0091-3057(94)90318-2]. [PMID: 7938110]. [DOI] [PubMed] [Google Scholar]
  • 88.Pacchioni A.M., Gioino G., Assis A., Cancela L.M. A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Ann. N. Y. Acad. Sci. 2002;965:233–246. doi: 10.1111/j.1749-6632.2002.tb04165.x. [http://dx.doi.org/10.1111/j.1749-6632.2002.tb04165.x]. [PMID: 12105099]. [DOI] [PubMed] [Google Scholar]
  • 89.Vezina P., Queen A.L. Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology (Berl.) 2000;151(2-3):184–191. doi: 10.1007/s002130000463. [http://dx.doi.org/10.1007/s002130000463]. [PMID: 10972464]. [DOI] [PubMed] [Google Scholar]
  • 90.Wolf M.E., White F.J., Hu X.T. MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 1994;14(3 Pt 2):1735–1745. doi: 10.1523/JNEUROSCI.14-03-01735.1994. [PMID: 8126567]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Gaytan O., Nason R., Alagugurusamy R., Swann A., Dafny N. MK-801 blocks the development of sensitization to the locomotor effects of methylphenidate. Brain Res. Bull. 2000;51(6):485–492. doi: 10.1016/s0361-9230(99)00268-3. [http://dx.doi.org/10.1016/S0361-9230(99)00268-3]. [PMID: 10758338]. [DOI] [PubMed] [Google Scholar]
  • 92.Heusner C.L., Palmiter R.D. Expression of mutant NMDA receptors in dopamine D1 receptor-containing cells prevents cocaine sensitization and decreases cocaine preference. J. Neurosci. 2005;25(28):6651–6657. doi: 10.1523/JNEUROSCI.1474-05.2005. [http://dx.doi.org/10.1523/JNEUROSCI.1474-05.2005]. [PMID: 16014726]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Li Y., White F.J., Wolf M.E. Pharmacological reversal of behavioral and cellular indices of cocaine sensitization in the rat. Psychopharmacology (Berl.) 2000;151(2-3):175–183. doi: 10.1007/s002130000454. [http://dx. doi.org/10.1007/s002130000454]. [PMID: 10972463]. [DOI] [PubMed] [Google Scholar]
  • 94.Kim H.S., Park W.K., Jang C.G., Oh S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain Res. Bull. 1996;40(3):201–207. doi: 10.1016/0361-9230(96)00006-8. [http://dx.doi.org/10.1016/0361-9230(96)00006-8]. [PMID: 8736582]. [DOI] [PubMed] [Google Scholar]
  • 95.Rompré P.P., Bauco P. Neurotensin receptor activation sensitizes to the locomotor stimulant effect of cocaine: a role for NMDA receptors. Brain Res. 2006;1085(1):77–86. doi: 10.1016/j.brainres.2006.02.011. [http://dx.doi.org/10. 1016/j.brainres.2006.02.011]. [PMID: 16574078]. [DOI] [PubMed] [Google Scholar]
  • 96.Acerbo M.J., Lee J.M., Delius J.D. Sensitization to apomorphine, effects of dizocilpine NMDA receptor blockades. Behav. Brain Res. 2004;151(1-2):201–208. doi: 10.1016/j.bbr.2003.08.021. [http://dx.doi.org/10.1016/j.bbr. 2003.08.021]. [PMID: 15084436]. [DOI] [PubMed] [Google Scholar]
  • 97.Võikar V., Soosaar A., Volke V., Kõks S., Bourin M., Männistö P.T., Vasar E. Apomorphine-induced behavioural sensitization in rats: individual differences, role of dopamine and NMDA receptors. Eur. Neuropsychopharmacol. 1999;9(6):507–514. doi: 10.1016/s0924-977x(99)00038-3. [http://dx.doi.org/10.1016/S0924-977X(99)00038-3]. [PMID: 10625119]. [DOI] [PubMed] [Google Scholar]
  • 98.Kalivas P.W. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend. 1995;37(2):95–100. doi: 10.1016/0376-8716(94)01063-q. [http://dx.doi.org/10.1016/0376-8716(94)01063-Q]. [PMID: 7758408]. [DOI] [PubMed] [Google Scholar]
  • 99.Rockhold R.W. Glutamatergic involvement in psychomotor stimulant action. Prog. Drug Res. 1998;50:155–192. doi: 10.1007/978-3-0348-8833-2_4. [PMID: 9670779]. [DOI] [PubMed] [Google Scholar]
  • 100.Kelsey J.E., Beer T., Lee E., Wagner A. Low doses of dizocilpine block the development and subsequent expression of locomotor sensitization to nicotine in rats. Psychopharmacology (Berl.) 2002;161(4):370–378. doi: 10.1007/s00213-002-1015-4. [http://dx.doi.org/10.1007/s00213-002-1015-4]. [PMID: 12073164]. [DOI] [PubMed] [Google Scholar]
  • 101.Jeziorski M., White F.J., Wolf M.E. MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse. 1994;16(2):137–147. doi: 10.1002/syn.890160207. [http://dx.doi.org/
10.1002/syn.890160207]. [PMID: 8197575]. [DOI] [PubMed] [Google Scholar]
  • 102.Trujillo K.A. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox. Res. 2002;4(4):373–391. doi: 10.1080/10298420290023954. [http://dx. doi.org/10.1080/10298420290023954]. [PMID: 12829426]. [DOI] [PubMed] [Google Scholar]
  • 103.Broadbent J., Weitemier A.Z. Dizocilpine (MK-801) prevents the development of sensitization to ethanol in DBA/2J mice. Alcohol Alcohol. 1999;34(3):283–288. doi: 10.1093/alcalc/34.3.283. [http://dx.doi.org/10.1093/alcalc/ 34.3.283]. [PMID: 10414602]. [DOI] [PubMed] [Google Scholar]
  • 104.Camarini R., Frussa-Filho R., Monteiro M.G., Calil H.M. MK-801 blocks the development of behavioral sensitization to the ethanol. Alcohol. Clin. Exp. Res. 2000;24(3):285–290. [http://dx.doi.org/
10.1111/j.1530-0277.2000.tb04609.x]. [PMID: 10776664]. [PubMed] [Google Scholar]
  • 105.Kotlinska J., Bochenski M., Danysz W. N-methyl-D-aspartate and group I metabotropic glutamate receptors are involved in the expression of ethanol-induced sensitization in mice. Behav. Pharmacol. 2006;17(1):1–8. doi: 10.1097/01.fbp.0000181600.95405.c7. [http://dx.doi.org/10.1097/01.fbp. 0000181600.95405.c7]. [PMID: 16377958]. [DOI] [PubMed] [Google Scholar]
  • 106.Yap J.J., Covington H.E., III, Gale M.C., Datta R., Miczek K.A. Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl.) 2005;179(1):230–239. doi: 10.1007/s00213-004-2023-3. [http://dx.doi.org/10.1007/s00213-004-2023-3]. [PMID: 15517195]. [DOI] [PubMed] [Google Scholar]
  • 107.Park S.Y., Kang U.G. Hypothetical dopamine dynamics in mania and psychosisits pharmacokinetic implications. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;43:89–95. doi: 10.1016/j.pnpbp.2012.12.014. [http://dx.doi.
org/10.1016/j.pnpbp.2012.12.014]. [PMID: 23268190]. [DOI] [PubMed] [Google Scholar]
  • 108.DAquila P.S.; Sias, A.; Gessa, G.L.; Serra, G. The NMDA receptor antagonist MK-801 prevents imipramine-induced supersensitivity to quinpirole. Eur. J. Pharmacol. 1992;224(2-3):199–202. doi: 10.1016/0014-2999(92)90805-e. [http://
dx.doi.org/10.1016/0014-2999(92)90805-E]. [PMID: 1361447]. [DOI] [PubMed] [Google Scholar]
  • 109.Demontis F., Falconi M., Canu D., Serra G. Memantine prevents bipolar-like behavior induced by chronic treatment with imipramine in rats. Eur. J. Pharmacol. 2015;752:49–54. doi: 10.1016/j.ejphar.2015.01.041. [http://dx.doi.org/
10.1016/j.ejphar.2015.01.041]. [PMID: 25661848]. [DOI] [PubMed] [Google Scholar]
  • 110.DAquila P.S.; Collu, M.; Devoto, P.; Serra, G. Chronic lithium chloride fails to prevent imipramine-induced sensitization to the dopamine D(2)-like receptor agonist quinpirole. Eur. J. Pharmacol. 2000;395(2):157–160. doi: 10.1016/s0014-2999(00)00189-8. [http://dx.doi.org/10.1016/ S0014-2999(00)00189-8]. [PMID: 10794822]. [DOI] [PubMed] [Google Scholar]
  • 111.Koukopoulos A., Reginaldi D., Serra G., Koukopoulos A., Sani G., Serra G. Antimanic and mood-stabilizing effect of memantine as an augmenting agent in treatment-resistant bipolar disorder. Bipolar Disord. 2010;12(3):348–349. doi: 10.1111/j.1399-5618.2010.00803.x. [http://dx.doi.org/10.1111/ j.1399-5618.2010.00803.x]. [PMID: 20565444]. [DOI] [PubMed] [Google Scholar]
  • 112.Koukopoulos A., Serra G., Koukopoulos A.E., Reginaldi D., Serra G. The sustained mood-stabilizing effect of memantine in the management of treatment resistant bipolar disorders: findings from a 12-month naturalistic trial. J. Affect. Disord. 2012;136(1-2):163–166. doi: 10.1016/j.jad.2011.09.040. [http://dx.doi.org/10.1016/j.jad.2011.09.040]. [PMID: 22030128]. [DOI] [PubMed] [Google Scholar]
  • 113.Keck P.E., Jr, Hsu H.A., Papadakis K., Russo J. Jr Memantine efficacy and safety in patients with acute mania associated with bipolar I disorder: a pilot evaluation. Clin. Neuropharmacol. 2009;32(4):199–204. doi: 10.1097/WNF.0b013e318184fae2. [http://dx.doi.org/10.1097/WNF.0b013e318184fae2]. [PMID: 19620854]. [DOI] [PubMed] [Google Scholar]
  • 114.Serra G., De Chiara L., Koukopoulos A., Serra G. Antimanic and long-lasting mood stabilizing effect of memantine in bipolar I mood disorder: two case reports. J. Clin. Psychopharmacol. 2013;33(5):715–717. doi: 10.1097/JCP.0b013e31829b62ba. [http://dx.doi.org/10.1097/JCP.0b013e31829b62ba]. [PMID: 24002206]. [DOI] [PubMed] [Google Scholar]
  • 115.Serra G., De Chiara L., Manfredi G., Koukopoulos A.E., Sani G., Girardi P., Koukopoulos A., Serra G. Memantine in the management of affective recurrences of bipolar disorders after the discontinuation of long-term lithium treatment: three case histories. Ther. Adv. Psychopharmacol. 2014;4(1):53–55. doi: 10.1177/2045125313507737. [http://dx.doi.org/
10.1177/2045125313507737]. [PMID: 24490033]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Serra G.D., Chiara L., Koukopoulos A.E., Koukopoulos A., Serra G., Kahn D.A. Memantine in the treatment and prophylaxis of bipolar II disorder and comorbid fibromyalgia: a case report. J. Psychiatr. Pract. 2014;20(3):232–236. doi: 10.1097/01.pra.0000450324.44661.12. [http://dx.doi.org/10.1097/ 01.pra.0000450324.44661.12]. [PMID: 24847998]. [DOI] [PubMed] [Google Scholar]
  • 117.De Chiara L., Serra G., Koukopoulos A.E., Koukopoulos A., Serra G. Memantine in the treatment and prophylaxis of bipolar type II mood disorder and co-morbid eating disorder: a case report. Riv. Psichiatr. 2014;49(4):192–194. doi: 10.1708/1600.17462. [PMID: 25174697]. [DOI] [PubMed] [Google Scholar]
  • 118.Serra G., Koukopoulos A., De Chiara L., Koukopoulos A.E., Tondo L., Girardi P., Baldessarini R.J., Serra G. Three-year, naturalistic, mirror-image assessment of adding memantine to the treatment of 30 treatment-resistant patients with bipolar disorder. J. Clin. Psychiatry. 2015;76(1):e91–e97. doi: 10.4088/JCP.13m08956. [http://dx.doi.org/10.4088/ JCP.13m08956]. [PMID: 25650685]. [DOI] [PubMed] [Google Scholar]

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES