Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. G., Stafford H. A., Conn E. E., Vennesland B. THE DISTRIBUTION IN HIGHER PLANTS OF TRIPHOSPHOPYRIDINE NUCLEOTIDE-LINKED ENZYME SYSTEMS CAPABLE OF REDUCING GLUTATHIONE. Plant Physiol. 1952 Oct;27(4):675–684. doi: 10.1104/pp.27.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. H. The Formol Titration of Bacteriological Media. J Bacteriol. 1923 May;8(3):245–267. doi: 10.1128/jb.8.3.245-267.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONN E. E., KRAEMER L. M., LIU P. N., VENNESLAND B. The aerobic oxidation of reduced triphosphopyridine nucleotide by a wheat germ enzyme system. J Biol Chem. 1952 Jan;194(1):143–151. [PubMed] [Google Scholar]
- KENTEN R. H., MANN P. J. G. The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochem J. 1953 Feb;53(3):498–505. doi: 10.1042/bj0530498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KENTEN R. H., MANN P. J. G. The oxidation of manganese by enzyme systems. Biochem J. 1952 Sep;52(1):125–130. doi: 10.1042/bj0520125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KENTEN R. H., MANN P. J. G. The oxidation of manganese by plant extracts in the presence of hydrogen peroxide. Biochem J. 1949;45(3):255–263. doi: 10.1042/bj0450255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenten R. H., Mann P. J. The oxidation of manganese by peroxidase systems. Biochem J. 1950 Jan;46(1):67–73. doi: 10.1042/bj0460067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mounfield J. D. The proteolytic enzymes of sprouted wheat. Biochem J. 1936 Mar;30(3):549–557. doi: 10.1042/bj0300549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickerson W. J., Romano A. H. Enzymatic Reduction of Cystine by Coenzyme I (DPNH). Science. 1952 Jun 20;115(2999):676–678. doi: 10.1126/science.115.2999.676. [DOI] [PubMed] [Google Scholar]
- OCHOA S. Biological mechanisms of carboxylation and decarboxylation. Physiol Rev. 1951 Jan;31(1):56–106. doi: 10.1152/physrev.1951.31.1.56. [DOI] [PubMed] [Google Scholar]
- Orcutt F. S., Wilson P. W. BIOCHEMICAL METHODS FOR THE STUDY OF NITROGEN METABOLISM IN PLANTS. Plant Physiol. 1936 Oct;11(4):713–729. doi: 10.1104/pp.11.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie N. W. The cuprous derivatives of some sulphydryl compounds. Biochem J. 1931;25(2):614–628. doi: 10.1042/bj0250614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie N. W. The preparation of glutathione from yeast and liver. Biochem J. 1930;24(1):51–54. doi: 10.1042/bj0240051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebstock T. L., Hamner C. L., Ball C. D., Sell H. M. EFFECT OF 2,4-DICHLOROPHENOXYACETIC ACID ON PROTEOLYTIC ACTIVITY OF RED KIDNEY BEAN PLANTS. Plant Physiol. 1952 Jul;27(3):639–643. doi: 10.1104/pp.27.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlenker F. S. DETERMINATION OF AMMONIA, GLUTAMINE, AND ASPARAGINE AMIDE NITROGEN IN PLANT JUICE. Plant Physiol. 1940 Oct;15(4):701–709. doi: 10.1104/pp.15.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tracey M. V. Leaf protease of tobacco and other plants. Biochem J. 1948;42(2):281–287. doi: 10.1042/bj0420281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAN HEYNINGEN R., PIRIE A. Reduction of glutathione coupled with oxidative decarboxylation of malate in cattle lens. Biochem J. 1953 Feb;53(3):436–444. doi: 10.1042/bj0530436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VON KORFF R. W. A rapid spectrophotometric assay for coenzyme A. J Biol Chem. 1953 Jan;200(1):401–405. [PubMed] [Google Scholar]
