Abstract
Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anghileri L. J. Studies on the accumulation mechanisms of radioisotopes used in tumor diagnostic. Strahlentherapie. 1971 Oct;142(4):456–462. [PubMed] [Google Scholar]
- Blumenthal N. C., Posner A. S. In vitro model of aluminum-induced osteomalacia: inhibition of hydroxyapatite formation and growth. Calcif Tissue Int. 1984 Jul;36(4):439–441. doi: 10.1007/BF02405357. [DOI] [PubMed] [Google Scholar]
- Bockman R. S., Boskey A. L., Blumenthal N. C., Alcock N. W., Warrell R. P., Jr Gallium increases bone calcium and crystallite perfection of hydroxyapatite. Calcif Tissue Int. 1986 Dec;39(6):376–381. doi: 10.1007/BF02555174. [DOI] [PubMed] [Google Scholar]
- Clarkson E. M., Luck V. A., Hynson W. V., Bailey R. R., Eastwood J. B., Woodhead J. S., Clements V. R., O'Riordan J. L., De Wardener H. E. The effect of aluminium hydroxide on calcium, phosphorus and aluminium balances, the serum parathyroid hormone concentration and the aluminium content of bone in patients with chronic renal failure. Clin Sci. 1972 Oct;43(4):519–531. doi: 10.1042/cs0430519. [DOI] [PubMed] [Google Scholar]
- Cournot-Witmer G., Zingraff J., Plachot J. J., Escaig F., Lefèvre R., Boumati P., Bourdeau A., Garabédian M., Galle P., Bourdon R. Aluminum localization in bone from hemodialyzed patients: relationship to matrix mineralization. Kidney Int. 1981 Sep;20(3):375–378. doi: 10.1038/ki.1981.149. [DOI] [PubMed] [Google Scholar]
- Hodsman A. B., Sherrard D. J., Alfrey A. C., Ott S., Brickman A. S., Miller N. L., Maloney N. A., Coburn J. W. Bone aluminum and histomorphometric features of renal osteodystrophy. J Clin Endocrinol Metab. 1982 Mar;54(3):539–546. doi: 10.1210/jcem-54-3-539. [DOI] [PubMed] [Google Scholar]
- Ikeda K., Matsumoto T., Morita K., Kurokawa K., Ogata E. Inhibition of in vitro mineralization by aluminum in a clonal osteoblastlike cell line, MC3T3-E1. Calcif Tissue Int. 1986 Nov;39(5):319–323. doi: 10.1007/BF02555198. [DOI] [PubMed] [Google Scholar]
- Jones K. W., Gordon B. M., Hanson A. L., Kwiatek W. M., Pounds J. G. X-ray fluorescence with synchrotron radiation. Ultramicroscopy. 1988;24(2-3):313–328. doi: 10.1016/0304-3991(88)90318-x. [DOI] [PubMed] [Google Scholar]
- Kimmel D. B., Jee W. S. A quantitative histologic analysis of the growing long bone metaphysis. Calcif Tissue Int. 1980;32(2):113–122. doi: 10.1007/BF02408530. [DOI] [PubMed] [Google Scholar]
- Mills B. G., Masuoka L. S., Graham C. C., Jr, Singer F. R., Waxman A. D. Gallium-67 citrate localization in osteoclast nuclei of Paget's disease of bone. J Nucl Med. 1988 Jun;29(6):1083–1087. [PubMed] [Google Scholar]
- Posner A. S., Blumenthal N. C., Boskey A. L. Model of aluminum-induced osteomalacia: inhibition of apatite formation and growth. Kidney Int Suppl. 1986 Feb;18:S17–S19. [PubMed] [Google Scholar]
- Repo M. A., Bockman R. S., Betts F., Boskey A. L., Alcock N. W., Warrell R. P., Jr Effect of gallium on bone mineral properties. Calcif Tissue Int. 1988 Nov;43(5):300–306. doi: 10.1007/BF02556640. [DOI] [PubMed] [Google Scholar]
- Warrell R. P., Jr, Alcock N. W., Bockman R. S. Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J Clin Oncol. 1987 Feb;5(2):292–298. doi: 10.1200/JCO.1987.5.2.292. [DOI] [PubMed] [Google Scholar]
- Warrell R. P., Jr, Bockman R. S., Coonley C. J., Isaacs M., Staszewski H. Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia. J Clin Invest. 1984 May;73(5):1487–1490. doi: 10.1172/JCI111353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warrell R. P., Jr, Isaacs M., Coonley C. J., Alcock N. W., Bockman R. S. Metabolic effects of gallium nitrate administered by prolonged infusion. Cancer Treat Rep. 1985 Jun;69(6):653–655. [PubMed] [Google Scholar]
- Warrell R. P., Jr, Israel R., Frisone M., Snyder T., Gaynor J. J., Bockman R. S. Gallium nitrate for acute treatment of cancer-related hypercalcemia. A randomized, double-blind comparison to calcitonin. Ann Intern Med. 1988 May;108(5):669–674. doi: 10.7326/0003-4819-108-5-669. [DOI] [PubMed] [Google Scholar]
- Warrell R. P., Jr, Issacs M., Alcock N. W., Bockman R. S. Gallium nitrate for treatment of refractory hypercalcemia from parathyroid carcinoma. Ann Intern Med. 1987 Nov;107(5):683–686. doi: 10.7326/0003-4819-107-5-683. [DOI] [PubMed] [Google Scholar]
- Warrell R. P., Jr, Skelos A., Alcock N. W., Bockman R. S. Gallium nitrate for acute treatment of cancer-related hypercalcemia: clinicopharmacological and dose response analysis. Cancer Res. 1986 Aug;46(8):4208–4212. [PubMed] [Google Scholar]