Abstract
Analyses of phenotypic mutations with altered patterns of cellular organization in invertebrate systems have lead to the identification of genes important to histogenesis. Efforts to identify genes defining segments or compartments in mammalian systems and demonstrate a role for such genes in the establishment of the cellular architectonics of the brain have been hampered by the absence of phenotypic mutations that reveal compartments. Evidence is presented that in the cerebellum of the mutant mouse, meander tail, there is an abrupt transition from the normal cytoarchitecture seen in the posterior lobes to a severely disorganized cellular pattern. Thus, in the anterior lobes the Purkinje cells are positioned randomly throughout the cortex, and other cellular layers, including the internal granule cell layer, do not form. In addition, radial Bergmann glial processes are virtually absent. One explanation for the discrete boundary of the affected area in the anterior portion of this mutant cerebellar cortex is that the meander tail gene influences compartmental cellular organization in mammalian brain.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caviness V. S., Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326. doi: 10.1146/annurev.ne.01.030178.001501. [DOI] [PubMed] [Google Scholar]
- Christakos S., Rhoten W. B., Feldman S. C. Rat calbindin D28K: purification, quantitation, immunocytochemical localization, and comparative aspects. Methods Enzymol. 1987;139:534–551. doi: 10.1016/0076-6879(87)39111-6. [DOI] [PubMed] [Google Scholar]
- Fraser S., Keynes R., Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature. 1990 Mar 29;344(6265):431–435. doi: 10.1038/344431a0. [DOI] [PubMed] [Google Scholar]
- Hatten M. E., Liem R. K., Mason C. A. Defects in specific associations between astroglia and neurons occur in microcultures of weaver mouse cerebellar cells. J Neurosci. 1984 Apr;4(4):1163–1172. doi: 10.1523/JNEUROSCI.04-04-01163.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatten M. E., Liem R. K., Mason C. A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci. 1986 Sep;6(9):2676–2683. doi: 10.1523/JNEUROSCI.06-09-02676.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrup K., Trenkner E. Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience. 1987 Dec;23(3):871–885. doi: 10.1016/0306-4522(87)90164-3. [DOI] [PubMed] [Google Scholar]
- Herrup K., Wilczynski S. L. Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience. 1982;7(9):2185–2196. doi: 10.1016/0306-4522(82)90129-4. [DOI] [PubMed] [Google Scholar]
- Hollander W. F., Waggie K. S. Meander tail: a recessive mutant located in chromosome 4 of the mouse. J Hered. 1977 Nov-Dec;68(6):403–406. doi: 10.1093/oxfordjournals.jhered.a108869. [DOI] [PubMed] [Google Scholar]
- Keynes R., Lumsden A. Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron. 1990 Jan;4(1):1–9. doi: 10.1016/0896-6273(90)90438-l. [DOI] [PubMed] [Google Scholar]
- Lewis J. Vertebrate development: genes and segmentation. Nature. 1989 Oct 5;341(6241):382–383. doi: 10.1038/341382a0. [DOI] [PubMed] [Google Scholar]
- Liem R. Simultaneous separation and purification of neurofilament and glial filament proteins from brain. J Neurochem. 1982 Jan;38(1):142–150. doi: 10.1111/j.1471-4159.1982.tb10865.x. [DOI] [PubMed] [Google Scholar]
- Murphy P., Davidson D. R., Hill R. E. Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain. Nature. 1989 Sep 14;341(6238):156–159. doi: 10.1038/341156a0. [DOI] [PubMed] [Google Scholar]
- Rakic P., Sidman R. L. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973 Jan;70(1):240–244. doi: 10.1073/pnas.70.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sidman R. L., Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 Nov 9;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3. [DOI] [PubMed] [Google Scholar]
- Sotelo C., Changeux J. P. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 1974 Sep 13;77(3):484–491. doi: 10.1016/0006-8993(74)90636-2. [DOI] [PubMed] [Google Scholar]
- Vogel M. W., Sunter K., Herrup K. Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death. J Neurosci. 1989 Oct;9(10):3454–3462. doi: 10.1523/JNEUROSCI.09-10-03454.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson D. G., Bhatt S., Chavrier P., Bravo R., Charnay P. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature. 1989 Feb 2;337(6206):461–464. doi: 10.1038/337461a0. [DOI] [PubMed] [Google Scholar]
- Wilkinson D. G., Bhatt S., Cook M., Boncinelli E., Krumlauf R. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature. 1989 Oct 5;341(6241):405–409. doi: 10.1038/341405a0. [DOI] [PubMed] [Google Scholar]