Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1956 Mar;31(2):165–167. doi: 10.1104/pp.31.2.165

An Auxin Inactivation System Involving Tyrosinase1,2

Winslow R Briggs 1,3, Peter M Ray 1,4
PMCID: PMC540751  PMID: 16654854

Full text

PDF
165

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briggs W. R., Morel G., Steeves T. A., Sussex I. M., Wetmore R. H. Enzymatic Auxin Inactivation by Extracts of the Fern, Osmunda cinnamomea L. Plant Physiol. 1955 Mar;30(2):143–148. doi: 10.1104/pp.30.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GALSTON A. W., BONNER J., BAKER R. S. Flavoprotein and peroxidase as components of the indoleacetic acid oxidase system of peas. Arch Biochem Biophys. 1953 Feb;42(2):456–470. doi: 10.1016/0003-9861(53)90373-7. [DOI] [PubMed] [Google Scholar]
  3. GOLDACRE P. L. Hydrogen peroxide in the enzymic oxidation of heteroauxin. Aust J Sci Res B. 1951 Aug;4(3):293–302. doi: 10.1071/bi9510293. [DOI] [PubMed] [Google Scholar]
  4. KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lockhart J. A. The Role of 2,4-Dichlorophenol in the Destruction of Indoleacetic Acid by Peroxidase. Plant Physiol. 1955 Jan;30(1):86–88. doi: 10.1104/pp.30.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MASON H. S. The chemistry of melanin; mechanism of the oxidation of catechol by tyrosinase. J Biol Chem. 1949 Dec;181(2):803–812. [PubMed] [Google Scholar]
  7. WAGENKNECHT A. C., BURRIS R. H. Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Arch Biochem. 1950 Jan;25(1):30–53. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES