Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1956 May;31(3):205–211. doi: 10.1104/pp.31.3.205

The Reduction and Oxidation of Glutathione by Plant Mitochondria1,2

L C T Young 1,2, Eric E Conn 1,2
PMCID: PMC540763  PMID: 16654865

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., Stafford H. A., Conn E. E., Vennesland B. THE DISTRIBUTION IN HIGHER PLANTS OF TRIPHOSPHOPYRIDINE NUCLEOTIDE-LINKED ENZYME SYSTEMS CAPABLE OF REDUCING GLUTATHIONE. Plant Physiol. 1952 Oct;27(4):675–684. doi: 10.1104/pp.27.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CONN E. E., VENNESLAND B. Glutathione reductase of wheat germ. J Biol Chem. 1951 Sep;192(1):17–28. [PubMed] [Google Scholar]
  3. Crook E. M. The system dehydroascorbic acid-glutathione. Biochem J. 1941 Mar;35(3):226–236. doi: 10.1042/bj0350226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KAPLAN N. O., COLOWICK S. P., NEUFELD E. F. Pyridine nucleotide transhydrogenase. III. Animal tissue transhydrogenases. J Biol Chem. 1953 Nov;205(1):1–15. [PubMed] [Google Scholar]
  5. LEHNINGER A. L. Oxidative phosphorylation. Harvey Lect. 1953;49:176–215. [PubMed] [Google Scholar]
  6. Laties G. G. The Physical Environment and Oxidative and Phosphorylative Capacities of Higher Plant Mitochondria. Plant Physiol. 1953 Oct;28(4):557–575. doi: 10.1104/pp.28.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MALEY G. F., LARDY H. A. Phosphorylation coupled with the oxidation of reduced cytochrome c. J Biol Chem. 1954 Oct;210(2):903–909. [PubMed] [Google Scholar]
  8. MAPSON L. W., GODDARD D. R. The reduction of glutathione by plant tissues. Biochem J. 1951 Oct;49(5):592–601. doi: 10.1042/bj0490592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MAPSON L. W., ISHERWOOD F. A., CHEN Y. T. Biological synthesis of L-ascorbic acid: the conversion of L-galactono-gamma-lactone into L-ascorbic acid by plant mitochondria. Biochem J. 1954 Jan;56(1):21–28. doi: 10.1042/bj0560021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MAPSON L. W., MOUSTAFA E. M. Ascorbic acid and glutathione as respiratory carriers in the respiration of pea seedlings. Biochem J. 1956 Feb;62(2):248–259. doi: 10.1042/bj0620248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mazelis M., Stumpf P. K. Fat Metabolism in Higher Plants. VI. Incorporation of P into Peanut Mitochondrial Phospholipids. Plant Physiol. 1955 May;30(3):237–243. doi: 10.1104/pp.30.3.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Millerd A., Bonner J., Biale J. B. The Climacteric Rise in Fruit Respiration as Controlled by Phosphorylative Coupling. Plant Physiol. 1953 Jul;28(3):521–531. doi: 10.1104/pp.28.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NEWCOMB E. H. Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc Soc Exp Biol Med. 1951 Mar;76(3):504–509. doi: 10.3181/00379727-76-18538. [DOI] [PubMed] [Google Scholar]
  14. RALL T. W., LEHNINGER A. L. Glutathione reductase of animal tissues. J Biol Chem. 1952 Jan;194(1):119–130. [PubMed] [Google Scholar]
  15. SCHNEIDER W. C., HOGEBOOM G. H. Cytochemical studies of mammalian tissues; the isolation of cell components by differential centrifugation: a review. Cancer Res. 1951 Jan;11(1):1–22. [PubMed] [Google Scholar]
  16. SLATER E. C. The components of the dihydrocozymase oxidase system. Biochem J. 1950 Apr;46(4):484–499. doi: 10.1042/bj0460484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. VAN HEYNINGEN R., PIRIE A. Reduction of glutathione coupled with oxidative decarboxylation of malate in cattle lens. Biochem J. 1953 Feb;53(3):436–444. doi: 10.1042/bj0530436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES