Skip to main content
Springer logoLink to Springer
. 2017 Apr 26;77(4):264. doi: 10.1140/epjc/s10052-017-4819-4

Measurement of the W boson polarisation in tt¯ events from pp collisions at s = 8 TeV in the lepton + jets channel with ATLAS

M Aaboud 180, G Aad 115, B Abbott 144, J Abdallah 10, O Abdinov 14, B Abeloos 148, O S AbouZeid 183, N L Abraham 199, H Abramowicz 203, H Abreu 202, R Abreu 147, Y Abulaiti 195,196, B S Acharya 217,218, S Adachi 205, L Adamczyk 60, D L Adams 36, J Adelman 139, S Adomeit 130, T Adye 170, A A Affolder 183, T Agatonovic-Jovin 16, J A Aguilar-Saavedra 159,164, S P Ahlen 30, F Ahmadov 94, G Aielli 173,174, H Akerstedt 195,196, T P A Åkesson 111, A V Akimov 126, G L Alberghi 27,28, J Albert 224, S Albrand 80, M J Alconada Verzini 100, M Aleksa 45, I N Aleksandrov 94, C Alexa 38, G Alexander 203, T Alexopoulos 12, M Alhroob 144, B Ali 167, M Aliev 102,103, G Alimonti 121, J Alison 46, S P Alkire 56, B M M Allbrooke 199, B W Allen 147, P P Allport 21, A Aloisio 134,135, A Alonso 57, F Alonso 100, C Alpigiani 184, A A Alshehri 78, M Alstaty 115, B Alvarez Gonzalez 45, D Álvarez Piqueras 222, M G Alviggi 134,135, B T Amadio 18, Y Amaral Coutinho 32, C Amelung 31, D Amidei 119, S P Amor Dos Santos 159,161, A Amorim 159,160, S Amoroso 45, G Amundsen 31, C Anastopoulos 185, L S Ancu 72, N Andari 21, T Andeen 13, C F Anders 83, J K Anders 104, K J Anderson 46, A Andreazza 121,122, V Andrei 82, S Angelidakis 11, I Angelozzi 138, A Angerami 56, F Anghinolfi 45, A V Anisenkov 140, N Anjos 15, A Annovi 156,157, C Antel 82, M Antonelli 70, A Antonov 128, D J Antrim 216, F Anulli 171, M Aoki 95, L Aperio Bella 21, G Arabidze 120, Y Arai 95, J P Araque 159, V Araujo Ferraz 32, A T H Arce 68, F A Arduh 100, J-F Arguin 125, S Argyropoulos 92, M Arik 22, A J Armbruster 189, L J Armitage 106, O Arnaez 45, H Arnold 71, M Arratia 43, O Arslan 29, A Artamonov 127, G Artoni 151, S Artz 113, S Asai 205, N Asbah 65, A Ashkenazi 203, B Åsman 195,196, L Asquith 199, K Assamagan 36, R Astalos 190, M Atkinson 221, N B Atlay 187, K Augsten 167, G Avolio 45, B Axen 18, M K Ayoub 148, G Azuelos 125, M A Baak 45, A E Baas 82, M J Baca 21, H Bachacou 182, K Bachas 102,103, M Backes 151, M Backhaus 45, P Bagiacchi 171,172, P Bagnaia 171,172, Y Bai 49, J T Baines 170, M Bajic 57, O K Baker 231, E M Baldin 140, P Balek 227, T Balestri 198, F Balli 182, W K Balunas 154, E Banas 62, Sw Banerjee 228, A A E Bannoura 230, L Barak 45, E L Barberio 118, D Barberis 73,74, M Barbero 115, T Barillari 131, M-S Barisits 45, T Barklow 189, N Barlow 43, S L Barnes 114, B M Barnett 170, R M Barnett 18, Z Barnovska-Blenessy 52, A Baroncelli 175, G Barone 31, A J Barr 151, L Barranco Navarro 222, F Barreiro 112, J Barreiro Guimarães da Costa 49, R Bartoldus 189, A E Barton 101, P Bartos 190, A Basalaev 155, A Bassalat 148, R L Bates 78, S J Batista 209, J R Batley 43, M Battaglia 183, M Bauce 171,172, F Bauer 182, H S Bawa 189, J B Beacham 142, M D Beattie 101, T Beau 110, P H Beauchemin 215, P Bechtle 29, H P Beck 20, K Becker 151, M Becker 113, M Beckingham 225, C Becot 141, A J Beddall 25, A Beddall 23, V A Bednyakov 94, M Bedognetti 138, C P Bee 198, L J Beemster 138, T A Beermann 45, M Begel 36, J K Behr 65, A S Bell 108, G Bella 203, L Bellagamba 27, A Bellerive 44, M Bellomo 116, K Belotskiy 128, O Beltramello 45, N L Belyaev 128, O Benary 203, D Benchekroun 177, M Bender 130, K Bendtz 195,196, N Benekos 12, Y Benhammou 203, E Benhar Noccioli 231, J Benitez 92, D P Benjamin 68, J R Bensinger 31, S Bentvelsen 138, L Beresford 151, M Beretta 70, D Berge 138, E Bergeaas Kuutmann 220, N Berger 7, J Beringer 18, S Berlendis 80, N R Bernard 116, C Bernius 141, F U Bernlochner 29, T Berry 107, P Berta 168, C Bertella 113, G Bertoli 195,196, F Bertolucci 156,157, I A Bertram 101, C Bertsche 65, D Bertsche 144, G J Besjes 57, O Bessidskaia Bylund 195,196, M Bessner 65, N Besson 182, C Betancourt 71, A Bethani 80, S Bethke 131, A J Bevan 106, R M Bianchi 158, M Bianco 45, O Biebel 130, D Biedermann 19, R Bielski 114, N V Biesuz 156,157, M Biglietti 175, J Bilbao De Mendizabal 72, T R V Billoud 125, H Bilokon 70, M Bindi 79, A Bingul 23, C Bini 171,172, S Biondi 27,28, T Bisanz 79, D M Bjergaard 68, C W Black 200, J E Black 189, K M Black 30, D Blackburn 184, R E Blair 8, T Blazek 190, I Bloch 65, C Blocker 31, A Blue 78, W Blum 113, U Blumenschein 79, S Blunier 47, G J Bobbink 138, V S Bobrovnikov 140, S S Bocchetta 111, A Bocci 68, C Bock 130, M Boehler 71, D Boerner 230, J A Bogaerts 45, D Bogavac 130, A G Bogdanchikov 140, C Bohm 195, V Boisvert 107, P Bokan 16, T Bold 60, A S Boldyrev 129, M Bomben 110, M Bona 106, M Boonekamp 182, A Borisov 169, G Borissov 101, J Bortfeldt 45, D Bortoletto 151, V Bortolotto 86,87,88, K Bos 138, D Boscherini 27, M Bosman 15, J D Bossio Sola 42, J Boudreau 158, J Bouffard 2, E V Bouhova-Thacker 101, D Boumediene 55, C Bourdarios 148, S K Boutle 78, A Boveia 142, J Boyd 45, I R Boyko 94, J Bracinik 21, A Brandt 10, G Brandt 79, O Brandt 82, U Bratzler 206, B Brau 116, J E Brau 147, W D Breaden Madden 78, K Brendlinger 154, A J Brennan 118, L Brenner 138, R Brenner 220, S Bressler 227, T M Bristow 69, D Britton 78, D Britzger 65, F M Brochu 43, I Brock 29, R Brock 120, G Brooijmans 56, T Brooks 107, W K Brooks 48, J Brosamer 18, E Brost 139, J H Broughton 21, P A Bruckman de Renstrom 62, D Bruncko 191, R Bruneliere 71, A Bruni 27, G Bruni 27, L S Bruni 138, BH Brunt 43, M Bruschi 27, N Bruscino 29, P Bryant 46, L Bryngemark 111, T Buanes 17, Q Buat 188, P Buchholz 187, A G Buckley 78, I A Budagov 94, F Buehrer 71, M K Bugge 150, O Bulekov 128, D Bullock 10, H Burckhart 45, S Burdin 104, C D Burgard 71, A M Burger 7, B Burghgrave 139, K Burka 62, S Burke 170, I Burmeister 66, J T P Burr 151, E Busato 55, D Büscher 71, V Büscher 113, P Bussey 78, J M Butler 30, C M Buttar 78, J M Butterworth 108, P Butti 138, W Buttinger 36, A Buzatu 78, A R Buzykaev 140, S Cabrera Urbán 222, D Caforio 167, V M Cairo 58,59, O Cakir 4, N Calace 72, P Calafiura 18, A Calandri 115, G Calderini 110, P Calfayan 90, G Callea 58,59, L P Caloba 32, S Calvente Lopez 112, D Calvet 55, S Calvet 55, T P Calvet 115, R Camacho Toro 46, S Camarda 45, P Camarri 173,174, D Cameron 150, R Caminal Armadans 221, C Camincher 80, S Campana 45, M Campanelli 108, A Camplani 121,122, A Campoverde 187, V Canale 134,135, A Canepa 212, M Cano Bret 54, J Cantero 145, T Cao 203, M D M Capeans Garrido 45, I Caprini 38, M Caprini 38, M Capua 58,59, R M Carbone 56, R Cardarelli 173, F Cardillo 71, I Carli 168, T Carli 45, G Carlino 134, B T Carlson 158, L Carminati 121,122, R M D Carney 195,196, S Caron 137, E Carquin 48, G D Carrillo-Montoya 45, J R Carter 43, J Carvalho 159,161, D Casadei 21, M P Casado 15, M Casolino 15, D W Casper 216, E Castaneda-Miranda 192, R Castelijn 138, A Castelli 138, V Castillo Gimenez 222, N F Castro 159, A Catinaccio 45, J R Catmore 150, A Cattai 45, J Caudron 29, V Cavaliere 221, E Cavallaro 15, D Cavalli 121, M Cavalli-Sforza 15, V Cavasinni 156,157, F Ceradini 175,176, L Cerda Alberich 222, A S Cerqueira 33, A Cerri 199, L Cerrito 173,174, F Cerutti 18, A Cervelli 20, S A Cetin 24, A Chafaq 177, D Chakraborty 139, S K Chan 81, Y L Chan 86, P Chang 221, J D Chapman 43, D G Charlton 21, A Chatterjee 72, C C Chau 209, C A Chavez Barajas 199, S Che 142, S Cheatham 217,219, A Chegwidden 120, S Chekanov 8, S V Chekulaev 212, G A Chelkov 94, M A Chelstowska 119, C Chen 93, H Chen 36, S Chen 50, S Chen 205, X Chen 51, Y Chen 96, H C Cheng 119, H J Cheng 49, Y Cheng 46, A Cheplakov 94, E Cheremushkina 169, R Cherkaoui El Moursli 181, V Chernyatin 36, E Cheu 9, L Chevalier 182, V Chiarella 70, G Chiarelli 156,157, G Chiodini 102, A S Chisholm 45, A Chitan 38, M V Chizhov 94, K Choi 90, A R Chomont 55, S Chouridou 11, B K B Chow 130, V Christodoulou 108, D Chromek-Burckhart 45, J Chudoba 166, A J Chuinard 117, J J Chwastowski 62, L Chytka 146, A K Ciftci 4, D Cinca 66, V Cindro 105, I A Cioara 29, C Ciocca 27,28, A Ciocio 18, F Cirotto 134,135, Z H Citron 227, M Citterio 121, M Ciubancan 38, A Clark 72, B L Clark 81, M R Clark 56, P J Clark 69, R N Clarke 18, C Clement 195,196, Y Coadou 115, M Cobal 217,219, A Coccaro 72, J Cochran 93, L Colasurdo 137, B Cole 56, A P Colijn 138, J Collot 80, T Colombo 216, P Conde Muiño 159,160, E Coniavitis 71, S H Connell 193, I A Connelly 107, V Consorti 71, S Constantinescu 38, G Conti 45, F Conventi 134, M Cooke 18, B D Cooper 108, A M Cooper-Sarkar 151, F Cormier 223, K J R Cormier 209, T Cornelissen 230, M Corradi 171,172, F Corriveau 117, A Cortes-Gonzalez 45, G Cortiana 131, G Costa 121, M J Costa 222, D Costanzo 185, G Cottin 43, G Cowan 107, B E Cox 114, K Cranmer 141, S J Crawley 78, G Cree 44, S Crépé-Renaudin 80, F Crescioli 110, W A Cribbs 195,196, M Crispin Ortuzar 151, M Cristinziani 29, V Croft 137, G Crosetti 58,59, A Cueto 112, T Cuhadar Donszelmann 185, J Cummings 231, M Curatolo 70, J Cúth 113, H Czirr 187, P Czodrowski 3, G D’amen 27,28, S D’Auria 78, M D’Onofrio 104, M J Da Cunha Sargedas De Sousa 159,160, C Da Via 114, W Dabrowski 60, T Dado 190, T Dai 119, O Dale 17, F Dallaire 125, C Dallapiccola 116, M Dam 57, J R Dandoy 46, N P Dang 71, A C Daniells 21, N S Dann 114, M Danninger 223, M Dano Hoffmann 182, V Dao 71, G Darbo 73, S Darmora 10, J Dassoulas 3, A Dattagupta 147, W Davey 29, C David 65, T Davidek 168, M Davies 203, P Davison 108, E Dawe 118, I Dawson 185, K De 10, R de Asmundis 134, A De Benedetti 144, S De Castro 27,28, S De Cecco 110, N De Groot 137, P de Jong 138, H De la Torre 120, F De Lorenzi 93, A De Maria 79, D De Pedis 171, A De Salvo 171, U De Sanctis 199, A De Santo 199, J B De Vivie De Regie 148, W J Dearnaley 101, R Debbe 36, C Debenedetti 183, D V Dedovich 94, N Dehghanian 3, I Deigaard 138, M Del Gaudio 58,59, J Del Peso 112, T Del Prete 156,157, D Delgove 148, F Deliot 182, C M Delitzsch 72, A Dell’Acqua 45, L Dell’Asta 30, M Dell’Orso 156,157, M Della Pietra 134, D della Volpe 72, M Delmastro 7, P A Delsart 80, D A DeMarco 209, S Demers 231, M Demichev 94, A Demilly 110, S P Denisov 169, D Denysiuk 182, D Derendarz 62, J E Derkaoui 180, F Derue 110, P Dervan 104, K Desch 29, C Deterre 65, K Dette 66, P O Deviveiros 45, A Dewhurst 170, S Dhaliwal 31, A Di Ciaccio 173,174, L Di Ciaccio 7, W K Di Clemente 154, C Di Donato 134,135, A Di Girolamo 45, B Di Girolamo 45, B Di Micco 175,176, R Di Nardo 45, K F Di Petrillo 81, A Di Simone 71, R Di Sipio 209, D Di Valentino 44, C Diaconu 115, M Diamond 209, F A Dias 69, M A Diaz 47, E B Diehl 119, J Dietrich 19, S Díez Cornell 65, A Dimitrievska 16, J Dingfelder 29, P Dita 38, S Dita 38, F Dittus 45, F Djama 115, T Djobava 76, J I Djuvsland 82, M A B do Vale 34, D Dobos 45, M Dobre 38, C Doglioni 111, J Dolejsi 168, Z Dolezal 168, M Donadelli 35, S Donati 156,157, P Dondero 152,153, J Donini 55, J Dopke 170, A Doria 134, M T Dova 100, A T Doyle 78, E Drechsler 79, M Dris 12, Y Du 53, J Duarte-Campderros 203, E Duchovni 227, G Duckeck 130, O A Ducu 125, D Duda 138, A Dudarev 45, A Chr Dudder 113, E M Duffield 18, L Duflot 148, M Dührssen 45, M Dumancic 227, A K Duncan 78, M Dunford 82, H Duran Yildiz 4, M Düren 77, A Durglishvili 76, D Duschinger 67, B Dutta 65, M Dyndal 65, C Eckardt 65, K M Ecker 131, R C Edgar 119, N C Edwards 69, T Eifert 45, G Eigen 17, K Einsweiler 18, T Ekelof 220, M El Kacimi 179, V Ellajosyula 115, M Ellert 220, S Elles 7, F Ellinghaus 230, A A Elliot 224, N Ellis 45, J Elmsheuser 36, M Elsing 45, D Emeliyanov 170, Y Enari 205, O C Endner 113, J S Ennis 225, J Erdmann 66, A Ereditato 20, G Ernis 230, J Ernst 2, M Ernst 36, S Errede 221, E Ertel 113, M Escalier 148, H Esch 66, C Escobar 158, B Esposito 70, A I Etienvre 182, E Etzion 203, H Evans 90, A Ezhilov 155, M Ezzi 181, F Fabbri 27,28, L Fabbri 27,28, G Facini 46, R M Fakhrutdinov 169, S Falciano 171, R J Falla 108, J Faltova 45, Y Fang 49, M Fanti 121,122, A Farbin 10, A Farilla 175, C Farina 158, E M Farina 152,153, T Farooque 15, S Farrell 18, S M Farrington 225, P Farthouat 45, F Fassi 181, P Fassnacht 45, D Fassouliotis 11, M Faucci Giannelli 107, A Favareto 73,74, W J Fawcett 151, L Fayard 148, O L Fedin 155, W Fedorko 223, S Feigl 150, L Feligioni 115, C Feng 53, E J Feng 45, H Feng 119, A B Fenyuk 169, L Feremenga 10, P Fernandez Martinez 222, S Fernandez Perez 15, J Ferrando 65, A Ferrari 220, P Ferrari 138, R Ferrari 152, D E Ferreira de Lima 83, A Ferrer 222, D Ferrere 72, C Ferretti 119, F Fiedler 113, A Filipčič 105, M Filipuzzi 65, F Filthaut 137, M Fincke-Keeler 224, K D Finelli 200, M C N Fiolhais 159,161, L Fiorini 222, A Fischer 2, C Fischer 15, J Fischer 230, W C Fisher 120, N Flaschel 65, I Fleck 187, P Fleischmann 119, G T Fletcher 185, R R M Fletcher 154, T Flick 230, B M Flierl 130, L R Flores Castillo 86, M J Flowerdew 131, G T Forcolin 114, A Formica 182, A Forti 114, A G Foster 21, D Fournier 148, H Fox 101, S Fracchia 15, P Francavilla 110, M Franchini 27,28, D Francis 45, L Franconi 150, M Franklin 81, M Frate 216, M Fraternali 152,153, D Freeborn 108, S M Fressard-Batraneanu 45, F Friedrich 67, D Froidevaux 45, J A Frost 151, C Fukunaga 206, E Fullana Torregrosa 113, T Fusayasu 132, J Fuster 222, C Gabaldon 80, O Gabizon 202, A Gabrielli 27,28, A Gabrielli 18, G P Gach 60, S Gadatsch 45, G Gagliardi 73,74, L G Gagnon 125, P Gagnon 90, C Galea 137, B Galhardo 159,161, E J Gallas 151, B J Gallop 170, P Gallus 167, G Galster 57, K K Gan 142, S Ganguly 55, J Gao 52, Y Gao 69, Y S Gao 189, F M Garay Walls 69, C García 222, J E García Navarro 222, M Garcia-Sciveres 18, R W Gardner 46, N Garelli 189, V Garonne 150, A Gascon Bravo 65, K Gasnikova 65, C Gatti 70, A Gaudiello 73,74, G Gaudio 152, L Gauthier 125, I L Gavrilenko 126, C Gay 223, G Gaycken 29, E N Gazis 12, Z Gecse 223, C N P Gee 170, Ch Geich-Gimbel 29, M Geisen 113, M P Geisler 82, K Gellerstedt 195,196, C Gemme 73, M H Genest 80, C Geng 52, S Gentile 171,172, C Gentsos 204, S George 107, D Gerbaudo 15, A Gershon 203, S Ghasemi 187, M Ghneimat 29, B Giacobbe 27, S Giagu 171,172, P Giannetti 156,157, S M Gibson 107, M Gignac 223, M Gilchriese 18, T P S Gillam 43, D Gillberg 44, G Gilles 230, D M Gingrich 3, N Giokaris 11, M P Giordani 217,219, F M Giorgi 27, P F Giraud 182, P Giromini 81, D Giugni 121, F Giuli 151, C Giuliani 131, M Giulini 83, B K Gjelsten 150, S Gkaitatzis 204, I Gkialas 204, E L Gkougkousis 183, L K Gladilin 129, C Glasman 112, J Glatzer 15, P C F Glaysher 69, A Glazov 65, M Goblirsch-Kolb 31, J Godlewski 62, S Goldfarb 118, T Golling 72, D Golubkov 169, A Gomes 159,160,162, R Gonçalo 159, R Goncalves Gama 32, J Goncalves Pinto Firmino Da Costa 182, G Gonella 71, L Gonella 21, A Gongadze 94, S González de la Hoz 222, S Gonzalez-Sevilla 72, L Goossens 45, P A Gorbounov 127, H A Gordon 36, I Gorelov 136, B Gorini 45, E Gorini 102,103, A Gorišek 105, A T Goshaw 68, C Gössling 66, M I Gostkin 94, C R Goudet 148, D Goujdami 179, A G Goussiou 184, N Govender 193, E Gozani 202, L Graber 79, I Grabowska-Bold 60, P O J Gradin 80, P Grafström 27,28, J Gramling 72, E Gramstad 150, S Grancagnolo 19, V Gratchev 155, P M Gravila 41, H M Gray 45, E Graziani 175, Z D Greenwood 109, C Grefe 29, K Gregersen 108, I M Gregor 65, P Grenier 189, K Grevtsov 7, J Griffiths 10, A A Grillo 183, K Grimm 101, S Grinstein 15, Ph Gris 55, J -F Grivaz 148, S Groh 113, E Gross 227, J Grosse-Knetter 79, G C Grossi 109, Z J Grout 108, L Guan 119, W Guan 228, J Guenther 91, F Guescini 72, D Guest 216, O Gueta 203, B Gui 142, E Guido 73,74, T Guillemin 7, S Guindon 2, U Gul 78, C Gumpert 45, J Guo 54, W Guo 119, Y Guo 52, R Gupta 63, S Gupta 151, G Gustavino 171,172, P Gutierrez 144, N G Gutierrez Ortiz 108, C Gutschow 108, C Guyot 182, C Gwenlan 151, C B Gwilliam 104, A Haas 141, C Haber 18, H K Hadavand 10, N Haddad 181, A Hadef 115, S Hageböck 29, M Hagihara 214, H Hakobyan 232, M Haleem 65, J Haley 145, G Halladjian 120, G D Hallewell 115, K Hamacher 230, P Hamal 146, K Hamano 224, A Hamilton 192, G N Hamity 185, P G Hamnett 65, L Han 52, S Han 49, K Hanagaki 95, K Hanawa 205, M Hance 183, B Haney 154, P Hanke 82, R Hanna 182, J B Hansen 57, J D Hansen 57, M C Hansen 29, P H Hansen 57, K Hara 214, A S Hard 228, T Harenberg 230, F Hariri 148, S Harkusha 123, R D Harrington 69, P F Harrison 225, F Hartjes 138, N M Hartmann 130, M Hasegawa 96, Y Hasegawa 186, A Hasib 144, S Hassani 182, S Haug 20, R Hauser 120, L Hauswald 67, M Havranek 166, C M Hawkes 21, R J Hawkings 45, D Hayakawa 207, D Hayden 120, C P Hays 151, J M Hays 106, H S Hayward 104, S J Haywood 170, S J Head 21, T Heck 113, V Hedberg 111, L Heelan 10, S Heim 154, T Heim 18, B Heinemann 65, J J Heinrich 130, L Heinrich 141, C Heinz 77, J Hejbal 166, L Helary 45, S Hellman 195,196, C Helsens 45, J Henderson 151, R C W Henderson 101, Y Heng 228, S Henkelmann 223, A M Henriques Correia 45, S Henrot-Versille 148, G H Herbert 19, H Herde 31, V Herget 229, Y Hernández Jiménez 194, G Herten 71, R Hertenberger 130, L Hervas 45, G G Hesketh 108, N P Hessey 138, J W Hetherly 63, E Higón-Rodriguez 222, E Hill 224, J C Hill 43, K H Hiller 65, S J Hillier 21, I Hinchliffe 18, E Hines 154, M Hirose 71, D Hirschbuehl 230, O Hladik 166, X Hoad 69, J Hobbs 198, N Hod 212, M C Hodgkinson 185, P Hodgson 185, A Hoecker 45, M R Hoeferkamp 136, F Hoenig 130, D Hohn 29, T R Holmes 18, M Homann 66, S Honda 214, T Honda 95, T M Hong 158, B H Hooberman 221, W H Hopkins 147, Y Horii 133, A J Horton 188, J-Y Hostachy 80, S Hou 201, A Hoummada 177, J Howarth 65, J Hoya 100, M Hrabovsky 146, I Hristova 19, J Hrivnac 148, T Hryn’ova 7, A Hrynevich 124, P J Hsu 89, S -C Hsu 184, Q Hu 52, S Hu 54, Y Huang 65, Z Hubacek 167, F Hubaut 115, F Huegging 29, T B Huffman 151, E W Hughes 56, G Hughes 101, M Huhtinen 45, P Huo 198, N Huseynov 94, J Huston 120, J Huth 81, G Iacobucci 72, G Iakovidis 36, I Ibragimov 187, L Iconomidou-Fayard 148, E Ideal 231, Z Idrissi 181, P Iengo 45, O Igonkina 138, T Iizawa 226, Y Ikegami 95, M Ikeno 95, Y Ilchenko 13, D Iliadis 204, N Ilic 189, G Introzzi 152,153, P Ioannou 11, M Iodice 175, K Iordanidou 56, V Ippolito 81, N Ishijima 149, M Ishino 205, M Ishitsuka 207, C Issever 151, S Istin 22, F Ito 214, J M Iturbe Ponce 114, R Iuppa 210,211, H Iwasaki 95, J M Izen 64, V Izzo 134, S Jabbar 3, B Jackson 154, P Jackson 1, V Jain 2, K B Jakobi 113, K Jakobs 71, S Jakobsen 45, T Jakoubek 166, D O Jamin 145, D K Jana 109, R Jansky 91, J Janssen 29, M Janus 79, P A Janus 60, G Jarlskog 111, N Javadov 94, T Javůrek 71, F Jeanneau 182, L Jeanty 18, J Jejelava 75, G-Y Jeng 200, P Jenni 71, C Jeske 225, S Jézéquel 7, H Ji 228, J Jia 198, H Jiang 93, Y Jiang 52, Z Jiang 189, S Jiggins 108, J Jimenez Pena 222, S Jin 49, A Jinaru 38, O Jinnouchi 207, H Jivan 194, P Johansson 185, K A Johns 9, C A Johnson 90, W J Johnson 184, K Jon-And 195,196, G Jones 225, R W L Jones 101, S Jones 9, T J Jones 104, J Jongmanns 82, P M Jorge 159,160, J Jovicevic 212, X Ju 228, A Juste Rozas 15, M K Köhler 227, A Kaczmarska 62, M Kado 148, H Kagan 142, M Kagan 189, S J Kahn 115, T Kaji 226, E Kajomovitz 68, C W Kalderon 151, A Kaluza 113, S Kama 63, A Kamenshchikov 169, N Kanaya 205, S Kaneti 43, L Kanjir 105, V A Kantserov 128, J Kanzaki 95, B Kaplan 141, L S Kaplan 228, A Kapliy 46, D Kar 194, K Karakostas 12, A Karamaoun 3, N Karastathis 12, M J Kareem 79, E Karentzos 12, S N Karpov 94, Z M Karpova 94, K Karthik 141, V Kartvelishvili 101, A N Karyukhin 169, K Kasahara 214, L Kashif 228, R D Kass 142, A Kastanas 197, Y Kataoka 205, C Kato 205, A Katre 72, J Katzy 65, K Kawade 133, K Kawagoe 99, T Kawamoto 205, G Kawamura 79, V F Kazanin 140, R Keeler 224, R Kehoe 63, J S Keller 65, J J Kempster 107, H Keoshkerian 209, O Kepka 166, B P Kerševan 105, S Kersten 230, R A Keyes 117, M Khader 221, F Khalil-zada 14, A Khanov 145, A G Kharlamov 140, T Kharlamova 140, T J Khoo 72, V Khovanskiy 127, E Khramov 94, J Khubua 76, S Kido 96, C R Kilby 107, H Y Kim 10, S H Kim 214, Y K Kim 46, N Kimura 204, O M Kind 19, B T King 104, M King 222, J Kirk 170, A E Kiryunin 131, T Kishimoto 205, D Kisielewska 60, F Kiss 71, K Kiuchi 214, O Kivernyk 182, E Kladiva 191, T Klapdor-kleingrothaus 71, M H Klein 56, M Klein 104, U Klein 104, K Kleinknecht 113, P Klimek 139, A Klimentov 36, R Klingenberg 66, T Klioutchnikova 45, E-E Kluge 82, P Kluit 138, S Kluth 131, J Knapik 62, E Kneringer 91, E B F G Knoops 115, A Knue 131, A Kobayashi 205, D Kobayashi 207, T Kobayashi 205, M Kobel 67, M Kocian 189, P Kodys 168, T Koffas 44, E Koffeman 138, N M Köhler 131, T Koi 189, H Kolanoski 19, M Kolb 83, I Koletsou 7, A A Komar 126, Y Komori 205, T Kondo 95, N Kondrashova 54, K Köneke 71, A C König 137, T Kono 95, R Konoplich 141, N Konstantinidis 108, R Kopeliansky 90, S Koperny 60, A K Kopp 71, K Korcyl 62, K Kordas 204, A Korn 108, A A Korol 140, I Korolkov 15, E V Korolkova 185, O Kortner 131, S Kortner 131, T Kosek 168, V V Kostyukhin 29, A Kotwal 68, A Koulouris 12, A Kourkoumeli-Charalampidi 152,153, C Kourkoumelis 11, V Kouskoura 36, A B Kowalewska 62, R Kowalewski 224, T Z Kowalski 60, C Kozakai 205, W Kozanecki 182, A S Kozhin 169, V A Kramarenko 129, G Kramberger 105, D Krasnopevtsev 128, M W Krasny 110, A Krasznahorkay 45, A Kravchenko 36, M Kretz 84, J Kretzschmar 104, K Kreutzfeldt 77, P Krieger 209, K Krizka 46, K Kroeninger 66, H Kroha 131, J Kroll 154, J Kroseberg 29, J Krstic 16, U Kruchonak 94, H Krüger 29, N Krumnack 93, M C Kruse 68, M Kruskal 30, T Kubota 118, H Kucuk 108, S Kuday 5, J T Kuechler 230, S Kuehn 71, A Kugel 84, F Kuger 229, T Kuhl 65, V Kukhtin 94, R Kukla 182, Y Kulchitsky 123, S Kuleshov 48, M Kuna 171,172, T Kunigo 97, A Kupco 166, O Kuprash 203, H Kurashige 96, L L Kurchaninov 212, Y A Kurochkin 123, M G Kurth 64, V Kus 166, E S Kuwertz 224, M Kuze 207, J Kvita 146, T Kwan 224, D Kyriazopoulos 185, A La Rosa 131, J L La Rosa Navarro 35, L La Rotonda 58,59, C Lacasta 222, F Lacava 171,172, J Lacey 44, H Lacker 19, D Lacour 110, E Ladygin 94, R Lafaye 7, B Laforge 110, T Lagouri 231, S Lai 79, S Lammers 90, W Lampl 9, E Lançon 182, U Landgraf 71, M P J Landon 106, M C Lanfermann 72, V S Lang 82, J C Lange 15, A J Lankford 216, F Lanni 36, K Lantzsch 29, A Lanza 152, S Laplace 110, C Lapoire 45, J F Laporte 182, T Lari 121, F Lasagni Manghi 27,28, M Lassnig 45, P Laurelli 70, W Lavrijsen 18, A T Law 183, P Laycock 104, T Lazovich 81, M Lazzaroni 121,122, B Le 118, O Le Dortz 110, E Le Guirriec 115, E P Le Quilleuc 182, M LeBlanc 224, T LeCompte 8, F Ledroit-Guillon 80, C A Lee 36, S C Lee 201, L Lee 1, B Lefebvre 117, G Lefebvre 110, M Lefebvre 224, F Legger 130, C Leggett 18, A Lehan 104, G Lehmann Miotto 45, X Lei 9, W A Leight 44, A G Leister 231, M A L Leite 35, R Leitner 168, D Lellouch 227, B Lemmer 79, K J C Leney 108, T Lenz 29, B Lenzi 45, R Leone 9, S Leone 156,157, C Leonidopoulos 69, S Leontsinis 12, G Lerner 199, C Leroy 125, A A J Lesage 182, C G Lester 43, M Levchenko 155, J Levêque 7, D Levin 119, L J Levinson 227, M Levy 21, D Lewis 106, M Leyton 64, B Li 52, C Li 52, H Li 198, L Li 68, L Li 54, Q Li 49, S Li 68, X Li 114, Y Li 187, Z Liang 49, B Liberti 173, A Liblong 209, P Lichard 45, K Lie 221, J Liebal 29, W Liebig 17, A Limosani 200, S C Lin 201, T H Lin 113, B E Lindquist 198, A E Lionti 72, E Lipeles 154, A Lipniacka 17, M Lisovyi 83, T M Liss 221, A Lister 223, A M Litke 183, B Liu 201, D Liu 201, H Liu 119, H Liu 36, J Liu 53, J B Liu 52, K Liu 115, L Liu 221, M Liu 52, Y L Liu 52, Y Liu 52, M Livan 152,153, A Lleres 80, J Llorente Merino 49, S L Lloyd 106, F Lo Sterzo 201, E M Lobodzinska 65, P Loch 9, F K Loebinger 114, K M Loew 31, A Loginov 231, T Lohse 19, K Lohwasser 65, M Lokajicek 166, B A Long 30, J D Long 221, R E Long 101, L Longo 102,103, K A Looper 142, J A Lopez Lopez 48, D Lopez Mateos 81, B Lopez Paredes 185, I Lopez Paz 15, A Lopez Solis 110, J Lorenz 130, N Lorenzo Martinez 90, M Losada 26, P J Lösel 130, X Lou 49, A Lounis 148, J Love 8, P A Love 101, H Lu 86, N Lu 119, H J Lubatti 184, C Luci 171,172, A Lucotte 80, C Luedtke 71, F Luehring 90, W Lukas 91, L Luminari 171, O Lundberg 195,196, B Lund-Jensen 197, P M Luzi 110, D Lynn 36, R Lysak 166, E Lytken 111, V Lyubushkin 94, H Ma 36, L L Ma 53, Y Ma 53, G Maccarrone 70, A Macchiolo 131, C M Macdonald 185, B Maček 105, J Machado Miguens 154,160, D Madaffari 115, R Madar 55, H J Maddocks 220, W F Mader 67, A Madsen 65, J Maeda 96, S Maeland 17, T Maeno 36, A Maevskiy 129, E Magradze 79, J Mahlstedt 138, C Maiani 148, C Maidantchik 32, A A Maier 131, T Maier 130, A Maio 159,160,162, S Majewski 147, Y Makida 95, N Makovec 148, B Malaescu 110, Pa Malecki 62, V P Maleev 155, F Malek 80, U Mallik 92, D Malon 8, C Malone 43, S Maltezos 12, S Malyukov 45, J Mamuzic 222, G Mancini 70, L Mandelli 121, I Mandić 105, J Maneira 159,160, L Manhaes de Andrade Filho 33, J Manjarres Ramos 213, A Mann 130, A Manousos 45, B Mansoulie 182, J D Mansour 49, R Mantifel 117, M Mantoani 79, S Manzoni 121,122, L Mapelli 45, G Marceca 42, L March 72, G Marchiori 110, M Marcisovsky 166, M Marjanovic 16, D E Marley 119, F Marroquim 32, S P Marsden 114, Z Marshall 18, S Marti-Garcia 222, B Martin 120, T A Martin 225, V J Martin 69, B Martin dit Latour 17, M Martinez 15, V I Martinez Outschoorn 221, S Martin-Haugh 170, V S Martoiu 38, A C Martyniuk 108, A Marzin 45, L Masetti 113, T Mashimo 205, R Mashinistov 126, J Masik 114, A L Maslennikov 140, I Massa 27,28, L Massa 27,28, P Mastrandrea 7, A Mastroberardino 58,59, T Masubuchi 205, P Mättig 230, J Mattmann 113, J Maurer 38, S J Maxfield 104, D A Maximov 140, R Mazini 201, I Maznas 204, S M Mazza 121,122, N C Mc Fadden 136, G Mc Goldrick 209, S P Mc Kee 119, A McCarn 119, R L McCarthy 198, T G McCarthy 131, L I McClymont 108, E F McDonald 118, J A Mcfayden 108, G Mchedlidze 79, S J McMahon 170, R A McPherson 224, M Medinnis 65, S Meehan 184, S Mehlhase 130, A Mehta 104, K Meier 82, C Meineck 130, B Meirose 64, D Melini 222, B R Mellado Garcia 194, M Melo 190, F Meloni 20, S B Menary 114, L Meng 104, X T Meng 119, A Mengarelli 27,28, S Menke 131, E Meoni 215, S Mergelmeyer 19, P Mermod 72, L Merola 134,135, C Meroni 121, F S Merritt 46, A Messina 171,172, J Metcalfe 8, A S Mete 216, C Meyer 113, C Meyer 154, J-P Meyer 182, J Meyer 138, H Meyer Zu Theenhausen 82, F Miano 199, R P Middleton 170, S Miglioranzi 73,74, L Mijović 69, G Mikenberg 227, M Mikestikova 166, M Mikuž 105, M Milesi 118, A Milic 36, D W Miller 46, C Mills 69, A Milov 227, D A Milstead 195,196, A A Minaenko 169, Y Minami 205, I A Minashvili 94, A I Mincer 141, B Mindur 60, M Mineev 94, Y Minegishi 205, Y Ming 228, L M Mir 15, K P Mistry 154, T Mitani 226, J Mitrevski 130, V A Mitsou 222, A Miucci 20, P S Miyagawa 185, A Mizukami 95, J U Mjörnmark 111, M Mlynarikova 168, T Moa 195,196, K Mochizuki 125, P Mogg 71, S Mohapatra 56, S Molander 195,196, R Moles-Valls 29, R Monden 97, M C Mondragon 120, K Mönig 65, J Monk 57, E Monnier 115, A Montalbano 198, J Montejo Berlingen 45, F Monticelli 100, S Monzani 121,122, R W Moore 3, N Morange 148, D Moreno 26, M Moreno Llácer 79, P Morettini 73, S Morgenstern 45, D Mori 188, T Mori 205, M Morii 81, M Morinaga 205, V Morisbak 150, S Moritz 113, A K Morley 200, G Mornacchi 45, J D Morris 106, S S Mortensen 57, L Morvaj 198, P Moschovakos 12, M Mosidze 76, H J Moss 185, J Moss 189, K Motohashi 207, R Mount 189, E Mountricha 36, E J W Moyse 116, S Muanza 115, R D Mudd 21, F Mueller 131, J Mueller 158, R S P Mueller 130, T Mueller 43, D Muenstermann 101, P Mullen 78, G A Mullier 20, F J Munoz Sanchez 114, J A Murillo Quijada 21, W J Murray 170,225, H Musheghyan 79, M Muškinja 105, A G Myagkov 169, M Myska 167, B P Nachman 18, O Nackenhorst 72, K Nagai 151, R Nagai 95, K Nagano 95, Y Nagasaka 85, K Nagata 214, M Nagel 71, E Nagy 115, A M Nairz 45, Y Nakahama 133, K Nakamura 95, T Nakamura 205, I Nakano 143, R F Naranjo Garcia 65, R Narayan 13, D I Narrias Villar 82, I Naryshkin 155, T Naumann 65, G Navarro 26, R Nayyar 9, H A Neal 119, P Yu Nechaeva 126, T J Neep 114, A Negri 152,153, M Negrini 27, S Nektarijevic 137, C Nellist 148, A Nelson 216, S Nemecek 166, P Nemethy 141, A A Nepomuceno 32, M Nessi 45, M S Neubauer 221, M Neumann 230, R M Neves 141, P Nevski 36, P R Newman 21, T Nguyen Manh 125, R B Nickerson 151, R Nicolaidou 182, J Nielsen 183, V Nikolaenko 169, I Nikolic-Audit 110, K Nikolopoulos 21, J K Nilsen 150, P Nilsson 36, Y Ninomiya 205, A Nisati 171, R Nisius 131, T Nobe 205, M Nomachi 149, I Nomidis 44, T Nooney 106, S Norberg 144, M Nordberg 45, N Norjoharuddeen 151, O Novgorodova 67, S Nowak 131, M Nozaki 95, L Nozka 146, K Ntekas 216, E Nurse 108, F Nuti 118, D C O’Neil 188, A A O’Rourke 65, V O’Shea 78, F G Oakham 44, H Oberlack 131, T Obermann 29, J Ocariz 110, A Ochi 96, I Ochoa 56, J P Ochoa-Ricoux 47, S Oda 99, S Odaka 95, H Ogren 90, A Oh 114, S H Oh 68, C C Ohm 18, H Ohman 220, H Oide 73,74, H Okawa 214, Y Okumura 205, T Okuyama 95, A Olariu 38, L F Oleiro Seabra 159, S A Olivares Pino 69, D Oliveira Damazio 36, A Olszewski 62, J Olszowska 62, A Onofre 159,163, K Onogi 133, P U E Onyisi 13, M J Oreglia 46, Y Oren 203, D Orestano 175,176, N Orlando 87, R S Orr 209, B Osculati 73,74, R Ospanov 114, G Otero y Garzon 42, H Otono 99, M Ouchrif 180, F Ould-Saada 150, A Ouraou 182, K P Oussoren 138, Q Ouyang 49, M Owen 78, R E Owen 21, V E Ozcan 22, N Ozturk 10, K Pachal 188, A Pacheco Pages 15, L Pacheco Rodriguez 182, C Padilla Aranda 15, M Pagáčová 71, S Pagan Griso 18, M Paganini 231, F Paige 36, P Pais 116, K Pajchel 150, G Palacino 90, S Palazzo 58,59, S Palestini 45, M Palka 61, D Pallin 55, E St Panagiotopoulou 12, C E Pandini 110, J G Panduro Vazquez 107, P Pani 195,196, S Panitkin 36, D Pantea 38, L Paolozzi 72, Th D Papadopoulou 12, K Papageorgiou 204, A Paramonov 8, D Paredes Hernandez 231, A J Parker 101, M A Parker 43, K A Parker 185, F Parodi 73,74, J A Parsons 56, U Parzefall 71, V R Pascuzzi 209, E Pasqualucci 171, S Passaggio 73, Fr Pastore 107, G Pásztor 44, S Pataraia 230, J R Pater 114, T Pauly 45, J Pearce 224, B Pearson 144, L E Pedersen 57, M Pedersen 150, S Pedraza Lopez 222, R Pedro 159,160, S V Peleganchuk 140, O Penc 166, C Peng 49, H Peng 52, J Penwell 90, B S Peralva 33, M M Perego 182, D V Perepelitsa 36, E Perez Codina 212, L Perini 121,122, H Pernegger 45, S Perrella 134,135, R Peschke 65, V D Peshekhonov 94, K Peters 65, R F Y Peters 114, B A Petersen 45, T C Petersen 57, E Petit 80, A Petridis 1, C Petridou 204, P Petroff 148, E Petrolo 171, M Petrov 151, F Petrucci 175,176, N E Pettersson 116, A Peyaud 182, R Pezoa 48, P W Phillips 170, G Piacquadio 198, E Pianori 225, A Picazio 116, E Piccaro 106, M Piccinini 27,28, M A Pickering 151, R Piegaia 42, J E Pilcher 46, A D Pilkington 114, A W J Pin 114, M Pinamonti 217,219, J L Pinfold 3, A Pingel 57, S Pires 110, H Pirumov 65, M Pitt 227, L Plazak 190, M-A Pleier 36, V Pleskot 113, E Plotnikova 94, D Pluth 93, R Poettgen 195,196, L Poggioli 148, D Pohl 29, G Polesello 152, A Poley 65, A Policicchio 58,59, R Polifka 209, A Polini 27, C S Pollard 78, V Polychronakos 36, K Pommès 45, L Pontecorvo 171, B G Pope 120, G A Popeneciu 39, A Poppleton 45, S Pospisil 167, K Potamianos 18, I N Potrap 94, C J Potter 43, C T Potter 147, G Poulard 45, J Poveda 45, V Pozdnyakov 94, M E Pozo Astigarraga 45, P Pralavorio 115, A Pranko 18, S Prell 93, D Price 114, L E Price 8, M Primavera 102, S Prince 117, K Prokofiev 88, F Prokoshin 48, S Protopopescu 36, J Proudfoot 8, M Przybycien 60, D Puddu 175,176, M Purohit 36, P Puzo 148, J Qian 119, G Qin 78, Y Qin 114, A Quadt 79, W B Quayle 217,218, M Queitsch-Maitland 65, D Quilty 78, S Raddum 150, V Radeka 36, V Radescu 151, S K Radhakrishnan 198, P Radloff 147, P Rados 118, F Ragusa 121,122, G Rahal 233, J A Raine 114, S Rajagopalan 36, M Rammensee 45, C Rangel-Smith 220, M G Ratti 121,122, D M Rauch 65, F Rauscher 130, S Rave 113, T Ravenscroft 78, I Ravinovich 227, M Raymond 45, A L Read 150, N P Readioff 104, M Reale 102,103, D M Rebuzzi 152,153, A Redelbach 229, G Redlinger 36, R Reece 183, R G Reed 194, K Reeves 64, L Rehnisch 19, J Reichert 154, A Reiss 113, C Rembser 45, H Ren 49, M Rescigno 171, S Resconi 121, E D Resseguie 154, O L Rezanova 140, P Reznicek 168, R Rezvani 125, R Richter 131, S Richter 108, E Richter-Was 61, O Ricken 29, M Ridel 110, P Rieck 131, C J Riegel 230, J Rieger 79, O Rifki 144, M Rijssenbeek 198, A Rimoldi 152,153, M Rimoldi 20, L Rinaldi 27, B Ristić 72, E Ritsch 45, I Riu 15, F Rizatdinova 145, E Rizvi 106, C Rizzi 15, R T Roberts 114, S H Robertson 117, A Robichaud-Veronneau 117, D Robinson 43, J E M Robinson 65, A Robson 78, C Roda 156,157, Y Rodina 115, A Rodriguez Perez 15, D Rodriguez Rodriguez 222, S Roe 45, C S Rogan 81, O Røhne 150, J Roloff 81, A Romaniouk 128, M Romano 27,28, S M Romano Saez 55, E Romero Adam 222, N Rompotis 184, M Ronzani 71, L Roos 110, E Ros 222, S Rosati 171, K Rosbach 71, P Rose 183, N-A Rosien 79, V Rossetti 195,196, E Rossi 134,135, L P Rossi 73, J H N Rosten 43, R Rosten 184, M Rotaru 38, I Roth 227, J Rothberg 184, D Rousseau 148, A Rozanov 115, Y Rozen 202, X Ruan 194, F Rubbo 189, M S Rudolph 209, F Rühr 71, A Ruiz-Martinez 44, Z Rurikova 71, N A Rusakovich 94, A Ruschke 130, H L Russell 184, J P Rutherfoord 9, N Ruthmann 45, Y F Ryabov 155, M Rybar 221, G Rybkin 148, S Ryu 8, A Ryzhov 169, G F Rzehorz 79, A F Saavedra 200, G Sabato 138, S Sacerdoti 42, H F-W Sadrozinski 183, R Sadykov 94, F Safai Tehrani 171, P Saha 139, M Sahinsoy 82, M Saimpert 182, T Saito 205, H Sakamoto 205, Y Sakurai 226, G Salamanna 175,176, A Salamon 173,174, J E Salazar Loyola 48, D Salek 138, P H Sales De Bruin 184, D Salihagic 131, A Salnikov 189, J Salt 222, D Salvatore 58,59, F Salvatore 199, A Salvucci 86,87,88, A Salzburger 45, D Sammel 71, D Sampsonidis 204, J Sánchez 222, V Sanchez Martinez 222, A Sanchez Pineda 134,135, H Sandaker 150, R L Sandbach 106, M Sandhoff 230, C Sandoval 26, D P C Sankey 170, M Sannino 73,74, A Sansoni 70, C Santoni 55, R Santonico 173,174, H Santos 159, I Santoyo Castillo 199, K Sapp 158, A Sapronov 94, J G Saraiva 159,162, B Sarrazin 29, O Sasaki 95, K Sato 214, E Sauvan 7, G Savage 107, P Savard 209, N Savic 131, C Sawyer 170, L Sawyer 109, J Saxon 46, C Sbarra 27, A Sbrizzi 27,28, T Scanlon 108, D A Scannicchio 216, M Scarcella 200, V Scarfone 58,59, J Schaarschmidt 227, P Schacht 131, B M Schachtner 130, D Schaefer 45, L Schaefer 154, R Schaefer 65, J Schaeffer 113, S Schaepe 29, S Schaetzel 83, U Schäfer 113, A C Schaffer 148, D Schaile 130, R D Schamberger 198, V Scharf 82, V A Schegelsky 155, D Scheirich 168, M Schernau 216, C Schiavi 73,74, S Schier 183, C Schillo 71, M Schioppa 58,59, S Schlenker 45, K R Schmidt-Sommerfeld 131, K Schmieden 45, C Schmitt 113, S Schmitt 65, S Schmitz 113, B Schneider 212, U Schnoor 71, L Schoeffel 182, A Schoening 83, B D Schoenrock 120, E Schopf 29, M Schott 113, J F P Schouwenberg 137, J Schovancova 10, S Schramm 72, M Schreyer 229, N Schuh 113, A Schulte 113, M J Schultens 29, H-C Schultz-Coulon 82, H Schulz 19, M Schumacher 71, B A Schumm 183, Ph Schune 182, A Schwartzman 189, T A Schwarz 119, H Schweiger 114, Ph Schwemling 182, R Schwienhorst 120, J Schwindling 182, T Schwindt 29, G Sciolla 31, F Scuri 156,157, F Scutti 118, J Searcy 119, P Seema 29, S C Seidel 136, A Seiden 183, F Seifert 167, J M Seixas 32, G Sekhniaidze 134, K Sekhon 119, S J Sekula 63, N Semprini-Cesari 27,28, C Serfon 150, L Serin 148, L Serkin 217,218, M Sessa 175,176, R Seuster 224, H Severini 144, T Sfiligoj 105, F Sforza 45, A Sfyrla 72, E Shabalina 79, N W Shaikh 195,196, L Y Shan 49, R Shang 221, J T Shank 30, M Shapiro 18, P B Shatalov 127, K Shaw 217,218, S M Shaw 114, A Shcherbakova 195,196, C Y Shehu 199, P Sherwood 108, L Shi 201, S Shimizu 96, C O Shimmin 216, M Shimojima 132, S Shirabe 99, M Shiyakova 94, A Shmeleva 126, D Shoaleh Saadi 125, M J Shochet 46, S Shojaii 121, D R Shope 144, S Shrestha 142, E Shulga 128, M A Shupe 9, P Sicho 166, A M Sickles 221, P E Sidebo 197, E Sideras Haddad 194, O Sidiropoulou 229, D Sidorov 145, A Sidoti 27,28, F Siegert 67, Dj Sijacki 16, J Silva 159,162, S B Silverstein 195, V Simak 167, Lj Simic 16, S Simion 148, E Simioni 113, B Simmons 108, D Simon 55, M Simon 113, P Sinervo 209, N B Sinev 147, M Sioli 27,28, G Siragusa 229, I Siral 119, S Yu Sivoklokov 129, J Sjölin 195,196, M B Skinner 101, H P Skottowe 81, P Skubic 144, M Slater 21, T Slavicek 167, M Slawinska 138, K Sliwa 215, R Slovak 168, V Smakhtin 227, B H Smart 7, L Smestad 17, J Smiesko 190, S Yu Smirnov 128, Y Smirnov 128, L N Smirnova 129, O Smirnova 111, J W Smith 79, M N K Smith 56, R W Smith 56, M Smizanska 101, K Smolek 167, A A Snesarev 126, I M Snyder 147, S Snyder 36, R Sobie 224, F Socher 67, A Soffer 203, D A Soh 201, G Sokhrannyi 105, C A Solans Sanchez 45, M Solar 167, E Yu Soldatov 128, U Soldevila 222, A A Solodkov 169, A Soloshenko 94, O V Solovyanov 169, V Solovyev 155, P Sommer 71, H Son 215, H Y Song 52, A Sood 18, A Sopczak 167, V Sopko 167, V Sorin 15, D Sosa 83, C L Sotiropoulou 156,157, R Soualah 217,219, A M Soukharev 140, D South 65, B C Sowden 107, S Spagnolo 102,103, M Spalla 156,157, M Spangenberg 225, F Spanò 107, D Sperlich 19, F Spettel 131, R Spighi 27, G Spigo 45, L A Spiller 118, M Spousta 168, R D St Denis 78, A Stabile 121, R Stamen 82, S Stamm 19, E Stanecka 62, R W Stanek 8, C Stanescu 175, M Stanescu-Bellu 65, M M Stanitzki 65, S Stapnes 150, E A Starchenko 169, G H Stark 46, J Stark 80, P Staroba 166, P Starovoitov 82, S Stärz 45, R Staszewski 62, P Steinberg 36, B Stelzer 188, H J Stelzer 45, O Stelzer-Chilton 212, H Stenzel 77, G A Stewart 78, J A Stillings 29, M C Stockton 117, M Stoebe 117, G Stoicea 38, P Stolte 79, S Stonjek 131, A R Stradling 10, A Straessner 67, M E Stramaglia 20, J Strandberg 197, S Strandberg 195,196, A Strandlie 150, M Strauss 144, P Strizenec 191, R Ströhmer 229, D M Strom 147, R Stroynowski 63, A Strubig 137, S A Stucci 36, B Stugu 17, N A Styles 65, D Su 189, J Su 158, S Suchek 82, Y Sugaya 149, M Suk 167, V V Sulin 126, S Sultansoy 6, T Sumida 97, S Sun 81, X Sun 3, J E Sundermann 71, K Suruliz 199, C J E Suster 200, M R Sutton 199, S Suzuki 95, M Svatos 166, M Swiatlowski 46, S P Swift 2, I Sykora 190, T Sykora 168, D Ta 71, K Tackmann 65, J Taenzer 203, A Taffard 216, R Tafirout 212, N Taiblum 203, H Takai 36, R Takashima 98, T Takeshita 186, Y Takubo 95, M Talby 115, A A Talyshev 140, J Tanaka 205, M Tanaka 207, R Tanaka 148, S Tanaka 95, R Tanioka 96, B B Tannenwald 142, S Tapia Araya 48, S Tapprogge 113, S Tarem 202, G F Tartarelli 121, P Tas 168, M Tasevsky 166, T Tashiro 97, E Tassi 58,59, A Tavares Delgado 159,160, Y Tayalati 181, A C Taylor 136, G N Taylor 118, P T E Taylor 118, W Taylor 213, F A Teischinger 45, P Teixeira-Dias 107, K K Temming 71, D Temple 188, H Ten Kate 45, P K Teng 201, J J Teoh 149, F Tepel 230, S Terada 95, K Terashi 205, J Terron 112, S Terzo 15, M Testa 70, R J Teuscher 209, T Theveneaux-Pelzer 115, J P Thomas 21, J Thomas-Wilsker 107, P D Thompson 21, A S Thompson 78, L A Thomsen 231, E Thomson 154, M J Tibbetts 18, R E Ticse Torres 115, V O Tikhomirov 126, Yu A Tikhonov 140, S Timoshenko 128, P Tipton 231, S Tisserant 115, K Todome 207, T Todorov 7, S Todorova-Nova 168, J Tojo 99, S Tokár 190, K Tokushuku 95, E Tolley 81, L Tomlinson 114, M Tomoto 133, L Tompkins 189, K Toms 136, B Tong 81, P Tornambe 71, E Torrence 147, H Torres 188, E Torró Pastor 184, J Toth 115, F Touchard 115, D R Tovey 185, T Trefzger 229, A Tricoli 36, I M Trigger 212, S Trincaz-Duvoid 110, M F Tripiana 15, W Trischuk 209, B Trocmé 80, A Trofymov 65, C Troncon 121, M Trottier-McDonald 18, M Trovatelli 224, L Truong 217,219, M Trzebinski 62, A Trzupek 62, J C-L Tseng 151, P V Tsiareshka 123, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 15, V Tsiskaridze 71, E G Tskhadadze 75, K M Tsui 86, I I Tsukerman 127, V Tsulaia 18, S Tsuno 95, D Tsybychev 198, Y Tu 87, A Tudorache 38, V Tudorache 38, T T Tulbure 37, A N Tuna 81, S A Tupputi 27,28, S Turchikhin 94, D Turgeman 227, I Turk Cakir 5, R Turra 121,122, P M Tuts 56, G Ucchielli 27,28, I Ueda 205, M Ughetto 195,196, F Ukegawa 214, G Unal 45, A Undrus 36, G Unel 216, F C Ungaro 118, Y Unno 95, C Unverdorben 130, J Urban 191, P Urquijo 118, P Urrejola 113, G Usai 10, J Usui 95, L Vacavant 115, V Vacek 167, B Vachon 117, C Valderanis 130, E Valdes Santurio 195,196, N Valencic 138, S Valentinetti 27,28, A Valero 222, L Valery 15, S Valkar 168, J A Valls Ferrer 222, W Van Den Wollenberg 138, P C Van Der Deijl 138, H van der Graaf 138, N van Eldik 202, P van Gemmeren 8, J Van Nieuwkoop 188, I van Vulpen 138, M C van Woerden 138, M Vanadia 171,172, W Vandelli 45, R Vanguri 154, A Vaniachine 208, P Vankov 138, G Vardanyan 232, R Vari 171, E W Varnes 9, T Varol 63, D Varouchas 110, A Vartapetian 10, K E Varvell 200, J G Vasquez 231, G A Vasquez 48, F Vazeille 55, T Vazquez Schroeder 117, J Veatch 79, V Veeraraghavan 9, L M Veloce 209, F Veloso 159,161, S Veneziano 171, A Ventura 102,103, M Venturi 224, N Venturi 209, A Venturini 31, V Vercesi 152, M Verducci 171,172, W Verkerke 138, J C Vermeulen 138, A Vest 67, M C Vetterli 188, O Viazlo 111, I Vichou 221, T Vickey 185, O E Vickey Boeriu 185, G H A Viehhauser 151, S Viel 18, L Vigani 151, M Villa 27,28, M Villaplana Perez 121,122, E Vilucchi 70, M G Vincter 44, V B Vinogradov 94, A Vishwakarma 65, C Vittori 27,28, I Vivarelli 199, S Vlachos 12, M Vlasak 167, M Vogel 230, P Vokac 167, G Volpi 156,157, M Volpi 118, H von der Schmitt 131, E von Toerne 29, V Vorobel 168, K Vorobev 128, M Vos 222, R Voss 45, J H Vossebeld 104, N Vranjes 16, M Vranjes Milosavljevic 16, V Vrba 166, M Vreeswijk 138, R Vuillermet 45, I Vukotic 46, P Wagner 29, W Wagner 230, H Wahlberg 100, S Wahrmund 67, J Wakabayashi 133, J Walder 101, R Walker 130, W Walkowiak 187, V Wallangen 195,196, C Wang 50, C Wang 53,115, F Wang 228, H Wang 18, H Wang 63, J Wang 65, J Wang 200, K Wang 117, Q Wang 144, R Wang 8, S M Wang 201, T Wang 56, W Wang 52, C Wanotayaroj 147, A Warburton 117, C P Ward 43, D R Wardrope 108, A Washbrook 69, P M Watkins 21, A T Watson 21, M F Watson 21, G Watts 184, S Watts 114, B M Waugh 108, S Webb 113, M S Weber 20, S W Weber 229, S A Weber 44, J S Webster 8, A R Weidberg 151, B Weinert 90, J Weingarten 79, C Weiser 71, H Weits 138, P S Wells 45, T Wenaus 36, T Wengler 45, S Wenig 45, N Wermes 29, M D Werner 93, P Werner 45, M Wessels 82, J Wetter 215, K Whalen 147, N L Whallon 184, A M Wharton 101, A White 10, M J White 1, R White 48, D Whiteson 216, F J Wickens 170, W Wiedenmann 228, M Wielers 170, C Wiglesworth 57, L A M Wiik-Fuchs 29, A Wildauer 131, F Wilk 114, H G Wilkens 45, H H Williams 154, S Williams 138, C Willis 120, S Willocq 116, J A Wilson 21, I Wingerter-Seez 7, F Winklmeier 147, O J Winston 199, B T Winter 29, M Wittgen 189, M Wobisch 109, T M H Wolf 138, R Wolff 115, M W Wolter 62, H Wolters 159,161, S D Worm 170, B K Wosiek 62, J Wotschack 45, M J Woudstra 114, K W Wozniak 62, M Wu 80, M Wu 46, S L Wu 228, X Wu 72, Y Wu 119, T R Wyatt 114, B M Wynne 69, S Xella 57, Z Xi 119, D Xu 49, L Xu 36, B Yabsley 200, S Yacoob 192, D Yamaguchi 207, Y Yamaguchi 149, A Yamamoto 95, S Yamamoto 205, T Yamanaka 205, K Yamauchi 133, Y Yamazaki 96, Z Yan 30, H Yang 54, H Yang 228, Y Yang 201, Z Yang 17, W-M Yao 18, Y C Yap 110, Y Yasu 95, E Yatsenko 7, K H Yau Wong 29, J Ye 63, S Ye 36, I Yeletskikh 94, E Yildirim 113, K Yorita 226, R Yoshida 8, K Yoshihara 154, C Young 189, C J S Young 45, S Youssef 30, D R Yu 18, J Yu 10, J M Yu 119, J Yu 93, L Yuan 96, S P Y Yuen 29, I Yusuff 43, B Zabinski 62, R Zaidan 92, A M Zaitsev 169, N Zakharchuk 65, J Zalieckas 17, A Zaman 198, S Zambito 81, D Zanzi 118, C Zeitnitz 230, M Zeman 167, A Zemla 60, J C Zeng 221, Q Zeng 189, O Zenin 169, T Ženiš 190, D Zerwas 148, D Zhang 119, F Zhang 228, G Zhang 52, H Zhang 50, J Zhang 8, L Zhang 71, L Zhang 52, M Zhang 221, R Zhang 29, R Zhang 52, X Zhang 53, Z Zhang 148, X Zhao 63, Y Zhao 53, Z Zhao 52, A Zhemchugov 94, J Zhong 151, B Zhou 119, C Zhou 228, L Zhou 56, L Zhou 63, M Zhou 49, M Zhou 198, N Zhou 51, C G Zhu 53, H Zhu 49, J Zhu 119, Y Zhu 52, X Zhuang 49, K Zhukov 126, A Zibell 229, D Zieminska 90, N I Zimine 94, C Zimmermann 113, S Zimmermann 71, Z Zinonos 79, M Zinser 113, M Ziolkowski 187, L Živković 16, G Zobernig 228, A Zoccoli 27,28, M zur Nedden 19, L Zwalinski 45; ATLAS Collaboration40,165,178,234
PMCID: PMC5409031  PMID: 28515670

Abstract

This paper presents a measurement of the polarisation of W bosons from tt¯ decays, reconstructed in events with one high-pT lepton and at least four jets. Data from pp collisions at the LHC were collected at s = 8 TeV and correspond to an integrated luminosity of 20.2 fb-1. The angle θ between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F0=0.709±0.019, FL=0.299±0.015 and FR=-0.008±0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.

Introduction

The top quark, discovered in 1995 by the CDF and D0 collaborations [1, 2] is the heaviest known elementary particle. It decays almost exclusively into a W  boson and a b-quark. The properties of the top decay vertex Wtb are determined by the structure of the weak interaction. In the Standard Model (SM) this interaction has a (V-A) structure, where V and A refer to the vector and axial vector components of the weak coupling. The W  boson, which is produced as a real particle in the decay of top quarks, possesses a polarisation which can be left-handed, right-handed or longitudinal. The corresponding fractions, referred to as helicity fractions, are determined by the Wtb vertex structure and the masses of the particles involved. Calculations at next-to-next-to-leading order (NNLO) in QCD predict the fractions to be FL=0.311±0.005, FR=0.0017±0.0001, F0=0.687±0.005 [3].

By measuring the polarisation of the W  boson with high precision, the SM prediction can be tested, and new physics processes which modify the structure of the Wtb vertex can be probed. The structure of the Wtb vertex can be expressed in a general form using left- and right-handed vector (VL/R) and tensor (gL/R) couplings:

LWtb=-g2b¯γμVLPL+VRPRtWμ--g2b¯iσμνqνmWgLPL+gRPRtWμ-+h.c. 1

Here, PL/R refer to the left- and right-handed chirality projection operators, mW to the W  boson mass, and g to the weak coupling constant. At tree level, all of the vector and tensor couplings vanish in the SM, except VL, which corresponds to the CKM matrix element Vtb and has a value of approximately one. Dimension-six operators, introduced in effective field theories, can lead to anomalous couplings, represented by non-vanishing values of VR, gL and gR [46].

The W  boson helicity fractions can be accessed via angular distributions of polarisation analysers. Such analysers are W  boson decay products whose angular distribution is sensitive to the W polarisation and determined by the Wtb vertex structure. In case of a leptonic decay of the W  boson (Wν), the charged lepton serves as an ideal analyser: its reconstruction efficiency is very high and the sensitivity of its angular distribution to the W boson polarisation is maximal due to its weak isospin component T3=-12. If the W  boson decays hadronically (Wqq¯), the down-type quark is used, as it carries the same weak isospin as the charged lepton. This provides it with the same analysing power as the charged lepton, which is only degraded by the lower reconstruction efficiency and resolution of jets compared to charged leptons. The reconstruction of the down-type quark is in particular difficult as the two decay products of a hadronically decaying W  boson are experimentally hard to separate. In the W  boson rest frame, the differential cross-section of the analyser follows the distribution

1σdσdcosθ=341-cos2θF0+381-cosθ2FL+381+cosθ2FR, 2

which directly relates the W  boson helicity fractions Fi to the angle θ between the analyser and the reversed direction of flight of the b-quark from the top quark decay in the W boson rest frame. Previous measurements of the W  boson helicity fractions from the ATLAS, CDF, CMS and D0 collaborations show agreement with the SM within the uncertainties [711].

In this paper, the W  boson helicity fractions are measured in top quark pair (tt¯) events. Data corresponding to an integrated luminosity of 20.2 fb-1of proton–proton (pp) collisions, produced at the LHC with a centre-of-mass energy of s = 8 TeV, and recorded with the ATLAS [12] detector, are analysed. The final state of the tt¯ events is characterised by the decay of the W bosons. This analysis considers the lepton+jets channel in which one of the W bosons decays leptonically and the other decays hadronically. Both W  boson decay modes are utilised for the measurement of cosθ. The signal selection and reconstruction includes direct decays of the W  boson into an electron or muon as well as W  boson decays into a τ-lepton which subsequently decays leptonically.

The ATLAS detector

The ATLAS experiment at the LHC is a multi-purpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |η|<2.5. It consists of silicon pixel, silicon microstrip, and transition-radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic energy measurements with high granularity. A hadron (steel/scintillator-tile) calorimeter covers the central pseudorapidity range (|η|<1.7). The end-cap and forward regions are instrumented with LAr calorimeters for electromagnetic and hadronic energy measurements up to |η|=4.9. The muon spectrometer surrounds the calorimeters and is based on three large air-core toroid superconducting magnets with eight coils each. Its bending power ranges from 2.0 to 7.5 T m. It includes a system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to at most 75 kHz. This is followed by the high-level trigger, two software-based trigger levels that together reduce the accepted event rate to 400 Hz on average depending on the data-taking conditions.

Data and simulated samples

The data set consists of pp collisions, recorded at the LHC with s = 8 TeV, and corresponds to an integrated luminosity of 20.2fb-1. Single-lepton triggers with a threshold of 24 GeV of transverse momentum (energy) for isolated muons (electrons) and 36 (60) GeV for muons (electrons) without an isolation criterion are used to select tt¯ candidate events. The lower trigger thresholds include isolation requirements on the candidate lepton, resulting in inefficiencies at high pT that are recovered by the triggers with higher pT thresholds.

Samples obtained from Monte Carlo (MC) simulations are used to characterise the detector response and reconstruction efficiency of tt¯ events, estimate systematic uncertainties and predict the background contributions from various processes. The response of the full ATLAS detector is simulated [13] using Geant 4 [14]. For the estimation of some systematic uncertainties, generated samples are passed through a faster simulation with parameterised showers in the calorimeters [15], while still using the full simulation of the tracking systems. Simulated events include the effect of multiple pp collisions from the same and nearby bunch-crossings (in-time and out-of-time pile-up) and are reweighted to match the number of collisions observed in data. All simulated samples are normalised using the most precise cross-section calculations available.

Signal tt¯ events are generated using the next-to-leading-order (NLO) QCD MC event generator Powheg-Box  [1619] using the CT10 parton distribution function (PDF) set [20]. Powheg-Box is interfaced to Pythia 6.425 [21] (referred to as the Powheg+Pythia sample), which is used to model the showering and hadronisation, with the CTEQ6L1 PDF set [22] and a set of tuned parameters called the Perugia2011C tune [23] for the modelling of the underlying event. The model parameter hdamp is set to mt and controls matrix element to parton shower matching in Powheg-Box and effectively regulates the amount of high-pT radiation.

The tt¯ cross-section is σ(tt¯)=253-15+13 pb. This value is the result of a NNLO QCD calculation that includes resummation of next-to-next-to-leading logarithmic soft gluon terms with top++2.0 [2430].

A sample generated with Powheg-Box interfaced with Herwig  6.520 [31] using Jimmy 4.31 [32] to simulate the underlying event (referred to as the Powheg+Herwig sample) is compared to a Powheg+Pythia sample to assess the impact of the different parton shower models. For both the Powheg+Herwig sample and this alternate Powheg+Pythia sample, the hdamp parameter is set to infinity.

To estimate the uncertainty due to the choice of the MC event generator, an alternate tt¯ MC sample is produced with MC@NLO [33, 34] with the CT10 PDF set interfaced to Herwig  6.520 using the AUET2 tune [35] and the CT10 PDF set for showering and hadronisation. In addition, samples generated with Powheg-Box interfaced to Pythia with variations in the amount of QCD initial- and final-state radiation (ISR/FSR) are used to estimate the effect of such uncertainty. The factorisation and renormalisation scales and the hdamp parameter in Powheg-Box as well as the transverse momentum scale of the space-like parton-shower evolution in Pythia are varied within the constraints obtained from an ATLAS measurement of tt¯ production in association with jets [36].

Single-top-quark-processes for the t-channel, s-channel and Wt associated production are also simulated with Powheg-Box  [37, 38] using the CT10 PDF set. The samples are interfaced to Pythia 6.425 with the CTEQ6L1 PDF set and the Perugia2011C underlying event tune. Overlaps between the tt¯ and Wt final states are removed [39]. The single-top-quark samples are normalised using the approximate NNLO theoretical cross-sections [4042] calculated with the MSTW2008 NNLO PDF set [43, 44]. All tt¯ and single-top samples are generated assuming a top quark mass of 172.5 GeV, compatible with the ATLAS measurement of mt=172.84±0.70GeV [45].

Events with a W or Z  boson produced in association with jets are generated using the leading-order (LO) event generator Alpgen 2.14 [46] with up to five additional partons and the CTEQ6L1 PDF set, interfaced to Pythia  6.425 for the parton showering and hadronisation. Separate samples for W / Z+light-jets, W/Zbb¯+jets, W/Zcc¯+jets and Wc+jets were generated. A parton–jet matching scheme (“MLM matching”) [47] is employed to avoid double-counting of jets generated from the matrix element and the parton shower. Overlap between the W/ZQQ¯Q=b,c events generated at the matrix element level and those generated by the parton shower evolution of the W / Z+light-jets sample are removed with an angular separation algorithm. If the angular distance ΔR between the heavy-quark pair is larger than 0.4, the matrix element prediction is used instead of the parton shower prediction. Event yields from the Z+jets background are normalised using their inclusive NNLO theoretical cross-sections [48]. The predictions of normalisation and flavour composition of the W+jets background are affected by large uncertainties. Hence, a data-driven technique is used to determine both the inclusive normalisation and the heavy-flavour fractions of this process. The approach followed exploits the fact that the W± boson production is charge-asymmetric at a pp collider. The W boson charge asymmetry depends on the flavour composition of the sample. Thus, correction factors estimated from data are used to rescale the fractions of Wbb¯/cc¯+jets, Wc+jets and W+light-jets events in the MC simulation: Kbb = Kcc = 1.50 ± 0.11 (stat. + syst.), Kc = 1.07 ± 0.27 (stat. + syst.) and Klight = 0.80 ± 0.04 (stat. + syst.) [49].

Diboson samples (WW, ZZ, WZ) are generated using the Sherpa 1.4.1 [50] event generator with the CT10 PDF set, with massive b- and c-quarks and with up to three additional partons in the LO matrix elements. The yields of these backgrounds are normalised using their NLO QCD theoretical cross-sections [51].

Multijet events can contain jets misidentified as leptons or non-prompt leptons from hadron decays and hence satisfy the selection criteria of the lepton+jets topology. This source of background events is referred to as fake-lepton background and is estimated using a data-driven approach (“matrix method”) which is based on the measurement of lepton selection efficiencies using different identification and isolation criteria [52].

Event selection and tt¯ reconstruction

Object reconstruction

The final state contains electrons, muons, jets with some of them originating from b-quarks, as well as missing transverse momentum.

Electrons are reconstructed from energy depositions in the electromagnetic calorimeter matching tracks in the inner detector. The transverse component of the energy deposition has to exceed 25 GeV and the pseudorapidity of the energy cluster, ηcluster, has to fullfil |ηcluster|<2.47, excluding the transition region between the barrel and end-cap sections of the electromagnetic calorimeter at 1.37<|ηcluster|<1.52. Electrons are further required to have a longitudinal impact parameter with respect to the hard-scattering vertex of less than 2 mm.

To reduce the background from non-prompt electrons (i.e. electrons produced within jets), electron candidates are also required to be isolated. Two η-dependent isolation criteria are applied. The first one considers the energy deposited in the calorimeter cells within a cone of size ΔR=0.2 around the electron direction. The second one sums the transverse momenta (pT) of all tracks with pT > 400 MeV within a cone of size ΔR=0.3 around the electron track. For each quantity, the transverse energy or momentum of the electron are subtracted. The isolation requirement is applied in such a way as to retain 90% of signal electrons, independent of their pT value. This constant efficiency is verified in a data sample of Zee decays [53].

For the reconstruction of muons, information from the muon spectrometer and the inner detector is combined. The combined muon track must satisfy pT>25GeV and |η|<2.5. The longitudinal impact parameter with respect to the hard-scattering vertex (defined in next section) is required to be less than 2 mm. Furthermore, muons are required to satisfy a pT-dependent track-based isolation requirement. The scalar sum of the track pT in a cone of variable size ΔR<10GeV/pTμ around the muon (excluding the muon track itself) has to be less than 5% of the muon pT.

Jets are reconstructed from topological clusters [12] built from energy depositions in the calorimeters using the anti-kt algorithm [54, 55] with a radius parameter of 0.4. Before being processed by the jet-finding algorithm, the topological cluster energies are corrected using a local calibration scheme [56, 57] to account for inactive detector material, out-of-cluster leakage and the noncompensating calorimeter response. After energy calibration [58], the jets are required to have pT>25GeV and |η|<2.5. To suppress jets from pile-up, the jet vertex fraction2 is required to be above 0.5 for all jets with pT  < 50 GeV and |η|  < 2.4. As all electron candidates are also reconstructed as jets, the closest jet within a cone of size ΔR = 0.2 around an electron candidate is discarded to avoid double-counting of electrons as jets. After this removal procedure, electrons within ΔR = 0.4 of any remaining jet are removed.

Jets are identified as originating from the hadronisation of a b-quark (b-tagged) via a multivariate algorithm  [59]. It makes use of the lifetime and mass of b-hadrons and accounts for displaced tracks and topological properties of the jets. A working point with 70% efficiency to tag a b-quark jet (b-jet) is used. The rejection factor for light-quark and gluon jets (light jets) is around 130 and about 5 for charm jets, as determined for b-tagged jets with pT  > 20 GeV and |η|<2.5 in simulated tt¯ events. The simulated b-tagging efficiency is corrected to that measured in data using calibrations from statistically independent event samples of tt¯ pairs decaying into a bb¯+-νν¯ final state [60].

The reconstruction of the transverse momentum of the neutrino from the leptonically decaying W  boson is based on the negative vector sum of all energy deposits and momenta of reconstructed and calibrated objects in the transverse plane (missing transverse momentum with magnitude ETmiss) as well as unassociated energy depositions [61].

Event selection

Events are selected from data taken in stable beam conditions with all relevant detector components being functional. At least one primary collision vertex is required with at least five associated tracks with pT  > 400 MeV. If more than one primary vertex is reconstructed, the one with the largest scalar sum of transverse momenta is selected as the hard-scattering vertex. If the event contains at least one jet with pT>20GeV that is identified as out-of-time activity from a previous pp collision or as calorimeter noise [62], the event is rejected.

In order to select events from tt¯ decays in the lepton+jets channel, exactly one reconstructed electron or muon with pT >25 GeV and at least four jets, of which at least one is b-tagged, are required. A match (ΔR<0.15) between the offline reconstructed electron or muon and the lepton reconstructed by the high-level trigger is required. The selected events are separated into two orthogonal b-tag regions: one region with exactly one b-tag and a second region with two or more b-tags. Thus, the data sample is split into four channels depending on the lepton flavour and the b-jet multiplicity: “e+jets, 1 b-tag”, “e+jets, 2 b-tags”, “μ+jets, 1 b-tag” and “μ+jets, 2 b-tags”.

For events with one b-tag, ETmiss is required to be greater than 20 GeV and the sum of ETmiss and transverse mass of the leptonically decaying W  boson, mT(W), is required to be greater than 60 GeV in order to suppress multijet background. In the case of two b-tags, no further requirement on the ETmiss and transverse mass of the W  boson is applied.

After this selection, the tt¯ candidate events are reconstructed using a kinematic likelihood fit as described next.

Reconstruction of the tt¯ system

The measurement of the W  boson polarisation in tt¯ events requires the reconstruction and identification of all tt¯ decay products. For this, a kinematic likelihood fitter (KLFitter) [63] is utilised. It maps the four model partons (two b-quarks and the qq¯ pair from a W boson decay) to four reconstructed jets. The numbers of jets used as input for KLFitter can be larger than four. The two jets with the largest output of the b-tagging algorithm together with two (three) remaining jets with the highest pT were chosen as KLFitter input as this selection leads to the highest reconstruction efficiency for events with four (at least five) jets. For each of the 4!=24 (5!=120 for events with at least five jets) possible jet-to-parton permutations, it maximises a likelihood, L, that incorporates Breit–Wigner distributions for the W  boson and top quark masses as well as transfer functions mapping the reconstructed jet and lepton energies to parton level or true lepton level, respectively. The expression for the likelihood is given by

L=BW(mq1q2q3|mt,Γt)·BW(mq1q2|mW,ΓW)·BW(mq4ν|mt,Γt)·BW(mν|mW,ΓW)·W(Ejet1meas|Eq1)·W(Ejet2meas|Eq2)·W(Ejet3meas|Eq3)·(Ejet4meas|Eq4)·W(Emeas|E)·W(Emiss,x|pνx)·W(Emiss,y|pνy). 3

where the BW(mij(k)|mt/WΓt/W) terms are the Breit-Wigner functions used to evaluate the mass of composite reconstructed particles (W bosons and top quarks) and W(Eimeas|Ej) are the transfer functions, with Eimeas being the measured energy of object i and Ej the “true” energy of the reconstructed parton j or true lepton . The transverse components pνx/y of the neutrino momentum are mapped to the missing transverse momentum Emiss,x/y via transfer functions W(Emiss,x/y|pνx/y). Individual transfer functions for electrons, muons, b-jets, light jets (including c-jets) and missing transverse momentum are used. These transfer functions are obtained from tt¯ events simulated with MC@NLO. The top quark decay products are uniquely matched to reconstructed objects to obtain a continuous function describing the relative energy difference between parton and reconstructed level as a function of the parton-level energy. Individual parameterisations are derived for different regions of |η|. The measurement of the W  boson polarisation in the lepton+jets channel is performed for both the top and the anti-top quarks in each event. The anti-down-type quark from the top quark decay (down-type quark from the anti-top quark decay) is used as the hadronic analyser and the charged lepton from the decay of the anti-top quark (charged anti-lepton from the top quark decay) as the leptonic analyser.

Since the likelihood defined in Eq. (3) is invariant under exchange of the W decay products, it needs further extensions to incorporate information related to down-type quarks. This is achieved by multiplying the likelihood by probability distributions of the b-tagging algorithm output as a function of the transverse momentum of the jets. These probability distributions are obtained from MC@NLO for b-quark jets as well as u / c- and d / s-quark jets. Since the W  boson decays into a pair of charm and strange quarks in 50% of decays into hadrons, the higher values of the b-tagging algorithm output for the charm quark allows for a separation of the two. This increases the fraction of events with correct matching of the two jets originating from a W boson decay to the corresponding up- and down-quark type jet to 60%, compared to 50% for the case of no separation power. The extended likelihood is normalised with respect to the sum of the extended likelihoods for all 120 (24) permutations and this quantity is called the “event probability”. This up- versus down-type quark separation method was established in an ATLAS measurement of the tt¯ spin correlation in the lepton+jets channel [64].

The permutation with the largest event probability is chosen. Figure 1a shows the distributions of the logarithm of the likelihood value for the permutation with the highest event probability for simulated tt¯ events. Correctly reconstructed events (“tt¯ right”) peak at high values of the likelihood. Other contributions come from incorrect assignments of jets (i.e. choosing the wrong permutation, “tt¯ wrong”), non-reconstructable events where for example a quark is out of the acceptance (“tt¯ non-reco”) and tt¯ events which do not have a lepton+jets topology (such as dileptonic tt¯ events, “tt¯ background”). In Fig. 1b the corresponding distribution of the event probability is shown. The peak at 0.5 corresponds to events where no separation between up- and down-type quarks is achieved, leading to two permutations with similar event probabilities. High event probability indicates a correct down-type quark reconstruction.

Fig. 1.

Fig. 1

a Logarithm of the likelihood value as output for reconstructed tt¯ events of the selected (best) jet-to-parton permutation. b Event probability for the selected (best) jet-to-parton permutation. Both distributions show events in the e + jets channel with 2 b-tags. Events from a tt¯ signal sample are split into events where the tt¯ pairs do not decay via the lepton+jets channel (“tt¯ background”), events where not all tt¯ decay products have been reconstructed (“tt¯ non-reco”), as well as correctly (“tt¯ right”) and incorrectly (“tt¯ wrong”) reconstructed tt¯ systems

To select the final data sample, the event probability is used to obtain the best jet-to-parton permutation per event. Events are required to have a reconstruction likelihood of logL>-48 to reject poorly reconstructed tt¯ events. The value of logL>-48 was selected to minimise the expected statistical uncertainty. The fraction of events where all jets were correctly assigned to the corresponding partons out of all events that have the corresponding jets present varies between 45 and 50%. The event yields after the final event selection are presented in Table 1.

Table 1.

Expected and observed event yields in the four channels (“e+jets, 1 b-tag”, “e+jets, 2 b-tags”, “μ+jets, 1 b-tag” and “μ+jets, 2 b-tags”) after the final event selection including the cut on the reconstruction likelihood. Uncertainties in the normalisation of each sample include systematic uncertainties for the data-driven backgrounds (W+jets and fake leptons) and theory uncertainties for the tt¯ signal and the other background sources.

Sample e + jets μ + jets
1 b-tag 2 b-tags 1 b-tag 2 b-tags
tt¯ 36,500 ± 2300 36,000 ± 2300 43,600 ± 2800 42,600 ± 2700
Single top 2000 ± 340 974 ± 170 2328 ± 400 1102 ± 190
W+light-jets 600 ± 30 24 ± 1 761 ± 38 45 ± 2
W+c 1210 ± 300 54 ± 13 1440 ± 360 51 ± 13
W+bb/cc 2730 ± 190 538 ± 38 3520 ± 250 780 ± 55
Z+jets 1200 ± 580 330 ± 160 610 ± 290 158 ± 76
Diboson 220 ± 100 33 ± 16 210 ± 100 37 ± 18
Fake lepton 2270 ± 680 450 ± 130 1750 ± 520 323 ± 97
Total expected 46,700 ± 2600 38,400 ± 2300 54,200 ± 2900 45,100 ± 2800
Data 45,246 40,045 53,747 46,048

Figure 2 shows the likelihood and the event probability as well as the reconstructed cosθ distribution after the final event selection. Good agreement between data and prediction is achieved.

Fig. 2.

Fig. 2

Measured and predicted distributions of a likelihood and b event probability from the kinematic fit and reconstructed cosθ distribution using c the leptonic and d the hadronic analysers with 2 b-tags. The displayed uncertainties represent the Monte Carlo statistical uncertainty as well as the background normalisation uncertainties

Measurement of the W boson helicity fractions

The W boson helicity fractions Fi are defined as the fraction of produced tt¯ events Ni in a given polarisation state divided by all produced tt¯ events:

Fi=NiN0+NL+NRfori= 0, L, R. 4

The selection efficiency ϵisel is different for each polarisation state and determines the number of selected events ni:

ni=ϵiselNifori= 0, L, R. 5

Dedicated tt¯ signal templates for a specific Fi are created by reweighting the simulated SM tt¯ events. These are produced by fitting the cosθ distribution for the full phase space and calculating per-event weights for each helicity fraction using the functional forms in Eq. (2). Individual templates are created for each lepton flavour and b-tag channel. Figure 3 shows the templates for the μ + jets channel with 2 b-tags.

Fig. 3.

Fig. 3

Templates of the cosθ distributions for the individual helicity fractions in the μ + jets channel with 2 b-tags for the a leptonic and b hadronic analyser

In addition to these signal templates, templates are derived for each source j of background events. These are independent of the helicity fractions Fi. Five different background templates are included: three W+jets templates (W+light-jets, Wc+jets and Wcc¯/bb¯+jets), a fake-lepton template, and one template for all remaining backgrounds, including contributions from electroweak processes (single top, diboson and Z+jets). The total number of expected events nexp in each channel is then given by

nexp=n0+nL+nR+nW+light+nW+c+nW+bb/cc+nfake+nrem.bkg.. 6

The signal and background templates are used to perform a likelihood fit with the number of background events nbkg,j and the efficiency corrected signal events Ni as free parameters:

L=k=1NbinsPoisson(ndata,k,nexp,k)j=1Nbkg12πσbkg,j×exp-(nbkg,j-n^bkg,j)22σbkg,j2. 7

Here, ndata,k represents the number of events in each bin k. The expected number of background events n^bkg,j of each background source j and their normalisation uncertainties σbkg,j are used to constrain the fit. The fit parameters scaling the background contributions are treated as correlated across all channels except for the fake-lepton background, which is uncorrelated across lepton flavours and b-tag regions. The size of the background normalisation uncertainties σbkg,j is described in Sect. 6.

Combined fits of the cosθ distributions using up to four different channels (e + jets and μ + jets, both with 1 b-tag or 2 b-tags) are performed for the leptonic and hadronic analyser individually. For each channel, individual templates of the signal and backgrounds are utilised. The combination leading to the lowest total uncertainty is used to quote the result. The helicity fractions are obtained from the fitted values of ni using Eqs. 46. The fit method is validated using pseudo-experiments varying F0 over the range [0.4, 1.0], FL over the range [0.15, 0.45] and FR over the range [−0.15, 0.15]. For each set, the unitarity constraint (F0 + FL + FR = 1) is imposed. No bias is observed.

The uncertainties in the helicity fractions obtained from the fit include both the statistical uncertainty of the data and the systematic uncertainty of the background normalisations. For the leptonic analyser, the most sensitive results are obtained for the two-channel combination (electron + muon) in the 2 b-tags region. Adding further channels increases the total systematic uncertainty, in particular due to uncertainties in the b-tagging, which do not compensate with the decrease in the statistical uncertainty. For the hadronic analyser, the four-channel combination (including both the 1 b-tag and 2 b-tags regions) improves the sensitivity compared to the two-channel combination. For each source of systematic uncertainty, modified pseudo-data templates are created and evaluated via ensemble testing. The differences between the mean helicity fractions measured using the nominal templates and those varied to reflect systematic errors are quoted as systematic uncertainty. Systematic uncertainties from different sources, described in the following section, are treated as uncorrelated.

Systematic uncertainties

Systematic uncertainties from several sources can affect the normalisation of the signal and background and/or the shape of the cosθ distribution. Correlations of a given systematic uncertainty are maintained across processes and channels, unless otherwise stated. The impact of uncertainties from the various sources is determined using a frequentist method based on the generation of pseudo-experiments.

Uncertainties associated with reconstructed objects

Different sources of systematic uncertainty affect the reconstructed objects used in this analyses. All these sources, described in the following, are propagated to changes in the shape of the cosθ distributions.

Uncertainties associated with the lepton selection arise from the trigger, reconstruction, identification and isolation efficiencies, as well as the lepton momentum scale and resolution. They are estimated from Z+-(=e,μ), J/ψ+- and Weν processes in data and in simulated samples using tag-and-probe techniques described in Refs. [6569]. Since small differences are observed between data and simulation, correction factors and their related uncertainties are considered to account for these differences. The effect of these uncertainties is propagated through the analysis and represent a minor source of uncertainty in this measurement.

Uncertainties associated with the jet selection arise from the jet energy scale, jet energy resolution, jet vertex fraction requirement and jet reconstruction efficiency. The jet energy scale and its uncertainty are derived combining information from test-beam data, LHC collision data, and simulation [58]. The jet energy scale uncertainty is split into 22 uncorrelated sources that have different jet pT and η dependencies and are treated independently in this analysis. The uncertainty related to the jet energy resolution is estimated by smearing the energy of jets in simulation by the difference between the jet energy resolutions for data and simulation [70]. The efficiency for each jet to satisfy the jet vertex fraction requirement is measured in Z+-+1-jet events in data and simulation [71]. The corresponding uncertainty is evaluated in the analysis by changing the nominal jet vertex fraction cut value and repeating the analysis using the modified cut value [72]. The jet reconstruction efficiency is found to be about 0.2% lower in simulation than in data for jets below 30 GeV and consistent with data for higher jet pT. All jet-related kinematic variables (including the missing transverse momentum) are recomputed by removing randomly 0.2% of the jets with pT below 30 GeV and the event selection is repeated.

Since the b-tagging efficiencies and misidentification rates are not modelled satisfactorily in MC simulation, all jets are assigned a specific pT- and η-dependent scale factor to account for this difference. The uncertainties in these scale factors are propagated to the measured value.

An additional uncertainty is assigned due to the extrapolation of the b-tagging efficiency measurement to the high-pT region. Twelve uncertainties are considered for the light-jet tagging, all depending on jet pT and η. These systematic uncertainties are taken as uncorrelated.

The uncertainties from the energy scale and resolution corrections for leptons and jets are propagated into the ETmiss calculation. Additional uncertainties are added to account for contributions from energy deposits not associated with any jet and due to soft-jets (7 GeV<pT<20 GeV), and are treated as fully correlated with each other. The uncertainty in the description of extra energy deposited due to pile-up interactions is treated as a separate ETmiss scale uncertainty. This uncertainty has a negligible effect on the measured W boson helicity fractions.

Uncertainties in signal modelling

The uncertainties in the signal modelling affect the kinematic properties of simulated tt¯ events and thus the acceptance and the shape of the reconstructed cosθ distribution.

To assess the impact of the different parton shower and hadronisation models, the Powheg+Herwig sample is compared to a Powheg+Pythia sample and the symmetrised difference is taken as a systematic uncertainty. Similarly, an uncertainty due to the matrix element (ME) MC event generator choice for the hard process is estimated by comparing events produced by Powheg-Box and MC@NLO, both interfaced to Herwig for showering and hadronisation. The uncertainties due to QCD initial- and final-state radiation (ISR/FSR) modelling are estimated using two Powheg+Pythia samples with varied parameters producing more and less radiation. The larger of the changes due to the two variations is taken and symmetrised.

The uncertainty in the tt¯ signal due to the PDF choice is estimated following the PDF4LHC recommendations [73]. It takes into account the differences between three PDF sets: CT10 NLO, MSTW2008 68% CL NLO and NNPDF 2.3 NLO [74]. The final PDF uncertainty is an envelope of an intra-PDF uncertainty, which evaluates the changes due to the variation of different PDF parameters within a single PDF error set, and an inter-PDF uncertainty, which evaluates differences between different PDF sets. Each PDF set has a prescription to evaluate an overall uncertainty using its error sets: symmetric Hessian in the case of CT10, asymmetric Hessian for MSTW and sample standard deviation in the NNPDF case. Half the width of the envelope of the three estimates is taken as the PDF systematic uncertainty.

The effect of the uncertainty in the top quark mass is estimated using MC samples with different input top masses for the signal process. The dependence of the obtained helicity fractions on the top quark mass is fitted with a linear function. The uncertainties in the helicity fractions are obtained from the slopes multiplied by the uncertainty in the top quark mass of 172.84±0.70GeV [45] measured by ATLAS at s = 8 TeV.

Uncertainties in background modelling

The different flavour samples of the W+jets background are scaled by data-driven calibration factors [49] as explained in Sect. 3. All sources of uncertainty on the correction factors other than normalisation (e.g. associated with the objects identification, reconstruction and calibration, etc.) are propagated to the W+jets estimation. Their normalisation uncertainty (5% for W+light-jets, 25% for W+c-jets and 7% for W+bb/cc) is taken into account in the likelihood fit as explained in Sect. 5.

A relative uncertainty of 30%, estimated using various control regions in the matrix method calculation [52], is used for the fake-lepton contribution.

For single top quark production, a normalisation uncertainty of 17% is assumed, which takes into account the weighted average of the theoretical uncertainties in s-, t- and Wt-channel production (+5/-4%) as well as additional uncertainties due to variations in the amount of initial- and final-state radiation and the extrapolation to high jet multiplicity. The uncertainty in the single-top background shape is assessed by comparing Wt-channel Monte Carlo samples generated using alternative methods to take into account Wt and tt¯ diagrams interference: diagram removal and diagram subtraction [39].

An overall normalisation uncertainty of 48% is applied to Z+jets and diboson contributions. It takes into account a 5% uncertainty in the theoretical (N)NLO cross-section as well as the uncertainty associated with the extrapolation to high jet multiplicity (24% per jet).

All normalisation uncertainties are included in the fit of the W boson helicity fractions via priors for the background yields. While the W+jets and fake-lepton uncertainties are included directly, the uncertainty in the total remaining background from other sources is combined to 16% (17%) in the 2 b-tags regions (1 b-tag + 2 b-tags regions) by adding the uncertainties in the theoretical cross-sections of the single top quark, diboson and Z+jets contributions in quadrature. The uncertainty in the shape of the W+jets background is considered by jet flavour decomposition. Further background shape uncertainties were evaluated and found to be negligible.

Other uncertainties

The uncertainty associated with the limited number of MC events in the signal and background templates is evaluated by performing pseudo-experiments on MC events.

The impact of the 1.9% luminosity uncertainty [75] is found to be negligible since the background normalisations are constrained in the fit.

Results

The measured W  boson helicity fractions obtained using the leptonic analyser in semileptonic tt¯ events with b-tags are presented in Table 2.

Table 2.

Measured W  boson helicity fractions obtained from the leptonic analyser including the statistical uncertainty from the fit and the background normalisation as well as the systematic uncertainty

Leptonic analyser (2 b-tags)
F0 = 0.709 ± 0.012 (stat.+bkg. norm.) -0.014+0.015 (syst.)
FL = 0.299 ± 0.008 (stat.+bkg. norm.) -0.012+0.013 (syst.)
FR = -0.008 ± 0.006 (stat.+bkg. norm.) ±0.012 (syst.)

By construction, the individual fractions sum up to one. The F0 value is anti-correlated with both FL and FR (ρF0,FL=-0.55, ρF0,FR=-0.75), and FL and FR are positively correlated (ρFL,FR=+0.16). The quoted values correspond to the total correlation coefficient, considering statistical and systematic uncertainties. These results are the most precise W  boson helicity fractions measured so far and are consistent with the SM predictions given at NNLO accuracy [3]. The inclusion of single b-tag regions does not improve the sensitivity, due to larger systematic uncertainties.

The W  boson helicity fractions obtained using the hadronic analyser of semileptonic tt¯ events with 1 b-tag and 2b-tags are given in Table 3. Using the hadronic analyser, the correlations between the helicity fraction are ρF0,FL=0.56, ρF0,FR=-0.91 and ρFL,FR=-0.92. The large anticorrelation between FL and FR is a consequence of the low separation power between the up- and down-type quark from the W decay and the resulting similar shapes of the templates of FL and FR (see Fig. 3). The results obtained with the two analysers agree well. The combination of leptonic and hadronic analysers has been tested and, despite the improvement in the statistical uncertainty, it does not improve the total uncertainty.

Table 3.

Measured W  boson helicity fractions for the hadronic analyser including the statistical uncertainty from the fit and the background normalisation as well as the systematic uncertainty

Hadronic analyser (1 b-tag + 2 b-tags)
F0 = 0.659 ± 0.010 (stat.+bkg. norm.) -0.054+0.052 (syst.)
FL = 0.281 ± 0.021 (stat.+bkg. norm.) -0.067+0.063 (syst.)
FR = 0.061 ± 0.022 (stat.+bkg. norm.) -0.108+0.101 (syst.)

Figure 4 shows, separately for the e+jets and μ+jets channels, the distributions of cosθ from the leptonic analyser. The distributions for the hadronic analyser are presented in Fig. 5. The uncertainty band in the data-to-best-fit ratio represents the statistical and background normalisation uncertainty. The deviations observed in the ratio are covered by the systematic uncertainties. The peak at cosθ-0.7 as seen in the single b-tag channels in Fig. 5 is caused by misreconstructed events. A missing second b-tag increases the probability of swapping the b-quark jet from the top quark decay with the up-type quark jet from the W decay.

Fig. 4.

Fig. 4

Post-fit distribution of cosθ for the leptonic analyser with 2 b-tags, in which a two-channel combination is performed (electron and muon). The uncertainty band represents the total uncertainty in the fit result

Fig. 5.

Fig. 5

Post-fit distribution of cosθ for the hadronic analyser, in which the combination of four channels is performed (electron and muon, with exactly 1 b-tag and b-tags). The uncertainty band represents the total uncertainty in the fit result

The contributions of the various systematic uncertainties are quoted in Table 4. In the case of the leptonic analyser, the dominant contributions come from the jet energy scale and resolution and the statistical error in the MC templates. For the hadronic analyser, the systematic uncertainties are larger. Including the 1 b-tag region aids in reducing the error. One of the main contributions is the b-tagging uncertainty, affecting both the event selection and b-tag categorisation, as well as the up- vs down-type quark separation. Other major contributions come from the jet energy resolution and the modelling of tt¯ events (initial- and final-state radiation, parton showering and hadronisation, and Monte Carlo event generator choice for the matrix elements).

Table 4.

Summary of systematic and statistical uncertainties for the measurements obtained using the leptonic (left) and the hadronic (right) analysers. The numbers in the last row (Stat. + bkg. norm) correspond to the statistical uncertainty of the fit, including the normalisation uncertainties in the background yields

Uncertainty Leptonic, 2 b-tags Hadronic, 1+2 b-tags
F0 FL FR F0 FL FR
Reconstructed objects
   Electron +0.0028 +0.0018 +0.0011 +0.0025 +0.0028 +0.0051
−0.0030 −0.0020 −0.0011 −0.0021 −0.0038 −0.0058
   Muon +0.0024 +0.0013 +0.0010 +0.0026 +0.0046 +0.0072
−0.0029 −0.0015 −0.0015 −0.0037 −0.0035 −0.0072
   Jet energy scale +0.0063 +0.0028 +0.0037 +0.0069 +0.012 +0.014
−0.0033 −0.0025 −0.0014 −0.0070 −0.008 −0.005
   Jet energy resolution +0.0062 +0.0048 +0.0072 +0.027 +0.033 +0.057
−0.0059 −0.0018 −0.0067 −0.031 −0.041 −0.071
   Jet vertex fraction +0.0036 +0.0019 +0.0017 +0.013 +0.0012 +0.011
−0.0017 −0.0013 −0.0006 −0.009 −0.0046 −0.005
   Jet reconstruction efficiency +0.0002 <0.0001 +0.0002 +0.0008 +0.0004 +0.0011
−0.0002 <0.0001 −0.0002 −0.0008 −0.0004 −0.0011
   b-tagging +0.0017 +0.0012 +0.0011 +0.029 +0.013 +0.034
−0.0021 −0.0013 −0.0012 −0.031 −0.014 −0.035
   Sum reconstructed objects +0.010 +0.0064 +0.0085 +0.043 +0.038 +0.069
−0.008 −0.0044 −0.0072 −0.045 −0.044 −0.080
Signal modelling
   Showering and hadronisation ±0.0019 ±0.0019 ±0.0037 ±0.015 ±0.001 ±0.014
   ME event generator ±0.0025 ±0.0032 ±0.0057 ±0.016 ±0.024 ±0.040
   ISR/FSR ±0.0033 ±0.0058 ±0.0034 ±0.018 ±0.039 ±0.057
   PDF ±0.0033 ±0.0042 ±0.0009 ±0.0010 ±0.0020 ±0.0020
   Top quark mass ±0.0017 ±0.0050 ±0.0033 ±0.0033 ±0.0100 ±0.0068
   Sum signal modelling ±0.0058 ±0.0094 ±0.0082 ±0.028 ±0.047 ±0.072
Method uncertainty
   Template statistics ±0.0091 ±0.0056 ±0.0044 ±0.0076 ±0.016 ±0.016
Total uncertainty
   Total systematic +0.015 +0.013 +0.013 +0.052 +0.063 +0.100
−0.014 −0.012 −0.012 −0.054 −0.067 −0.110
   Stat. + bkg. norm ±0.012 ±0.008 ±0.006 ±0.010 ±0.021 ±0.022

Within the effective field theory framework [76], the Wtb decay vertex can be parameterised in terms of anomalous couplings as shown in Eq. (1). Limits on these anomalous left- and right-handed vector and tensor couplings are set using the EFTfitter tool [77] and the model of [76]. The anomalous couplings are assumed to be real, corresponding to the CP-conserving case. As the W helicity fractions only allow the ratios of couplings to be constrained, the value of VL is fixed to the Standard Model prediction of one. The correlations of systematic uncertainties are taken into account. Figure 6 shows the limits on gL and gR couplings while VL and VR are fixed to their SM values, as well as VR and gR limits, where the other couplings are fixed to their SM values. The intervals are obtained using the leptonic analyser since it provides the most sensitive results. Table 5 shows the 95% confidence level (CL) intervals for each anomalous coupling while fixing all others to their SM value. These limits correspond to the set of smallest intervals containing 95% of the marginalised posterior distribution for the corresponding parameter.

Fig. 6.

Fig. 6

a Limits on the anomalous left- and right-handed tensor couplings of the Wtb decay vertex as obtained from the measured W  boson helicity fractions from the leptonic analyser. b Limits on the right-handed vector and tensor coupling. As the couplings are assumed to be real, the real part corresponds to the magnitude. Unconsidered couplings are fixed to their SM values

Table 5.

Allowed ranges for the anomalous couplings VR, gL, and gR at 95% CL. The limits are derived using the measured W helicity fractions using the leptonic analyser for events with b-tags (combination of the two channels, electron and muon)

Coupling 95% CL interval
VR [-0.24,0.31]
gL [-0.14,0.11]
gR [-0.02,0.06],[0.74,0.78]

Similar limits on the anomalous couplings were derived by both the ATLAS and CMS experiments using the measured helicity fractions of W bosons [10, 11]. Complementary limits can be set by other measurements: the allowed region of gR0.75 is excluded by measurements of the t-channel single top quark production [7780] which also constrains VL. The branching fraction of B¯Xsγ allow more stringent limits to be set on gL and VR [81].

Conclusion

The longitudinal, left- and right-handed W  boson helicity fractions are measured using the angle between the charged lepton (down-type quark) and the reversed b-quark direction in the W  boson rest frame for leptonically (hadronically) decaying W  bosons from tt¯ decays. A data set corresponding to 20.2 fb-1 of pp collisions at the LHC with a centre-of-mass energy of s = 8 TeV, recorded by the ATLAS experiment, is analysed. Events are required to include one isolated electron or muon and at least four jets, with at least one of them tagged as a b-jet. Events are reconstructed using a kinematic likelihood fit based on mass constraints for the top quarks and W bosons. It utilises the weight of the b-jet tagging algorithm to further separate the up- and down-type quarks from the hadronically decaying W bosons. The fractions for left-handed, right-handed and longitudinally polarised W bosons are found to be F0 = 0.709 ± 0.012 (stat.+bkg. norm.) ±0.015 (syst.), FL = 0.299 ± 0.008 (stat.+bkg. norm.) ±0.013 (syst.) and FR = -0.008 ± 0.006 (stat.+bkg. norm.) ±0.012 (syst.). These results constitute the most precise measurement of the W helicity fractions in tt¯ events to date and are in good agreement with the Standard Model predictions within uncertainties. Using these results, limits on anomalous couplings of the Wtb vertex are set.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [82].

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2). The angular distance is measured in units of ΔR(Δη)2+(Δϕ)2.

2

The jet vertex fraction is defined as the scalar sum of the transverse momenta of a jet’s tracks stemming from the primary collision vertex divided by the scalar sum of the transverse momenta of all tracks in a jet.

Change history

1/9/2019

This change does not have any impact on the measured helicity fractions, but it changes the obtained limits on the anomalous couplings.

References

  • 1.CDF Collaboration, F. Abe et al., Observation of top quark production in p¯p collisions. Phys. Rev. Lett. 74, 2626 (1995). doi:10.1103/PhysRevLett.%2074.2626. arXiv: hep-ex/9503002 [DOI] [PubMed]
  • 2.D0 Collaboration, S. Abachi et al., Search for high mass top quark production in pp¯ collisions at s=1.8 TeV, Phys. Rev. Lett. 74, 2422 (1995). doi:10.1103/PhysRevLett.74.2422. arXiv: hep-ex/9411001 [DOI] [PubMed]
  • 3.Czarnecki A, Korner JG, Piclum JH. Helicity fractions of W bosons from top quark decays at NNLO in QCD. Phys. Rev. D. 2010;81:111503. doi: 10.1103/PhysRevD.81.111503. [DOI] [Google Scholar]
  • 4.Buchmuller W, Wyler D. Effective Lagrangian analysis of new interactions and flavor conservation. Nucl. Phys. B. 1986;268:621. doi: 10.1016/0550-3213(86)90262-2. [DOI] [Google Scholar]
  • 5.Aguilar-Saavedra JA. A minimal set of top anomalous couplings. Nucl. Phys. B. 2009;812:181. doi: 10.1016/j.nuclphysb.2008.12.012. [DOI] [Google Scholar]
  • 6.Zhang C, Willenbrock S. Effective-field-theory approach to top-quark production and decay. Phys. Rev. D. 2011;83:034006. doi: 10.1103/PhysRevD.83.034006. [DOI] [Google Scholar]
  • 7.CDF and D0 Collaborations, T. Aaltonen et al., Combination of CDF and D0 measurements of the W boson helicity in top quark decays. Phys. Rev. D 85, 071106 (2012). doi:10.1103/PhysRevD.85.071106. arXiv:1202.5272 [hep-ex]
  • 8.CDF Collaboration, T. Aaltonen et al., Measurement of W-Boson Polarization in Top-quark Decay in pp¯ Collisions at s = 1.96 TeV. Phys. Rev. Lett 105, 042002 (2010). doi:10.1103/PhysRevLett.105.042002. arXiv:1003.0224 [hep-ex] [DOI] [PubMed]
  • 9.D0 Collaboration, V.M. Abazov et al., Measurement of the W boson helicity in top quark decays using 5.4 fb-1 of pp¯ collision data. Phys. Rev. D 83, 032009 (2011). doi:10.1103/PhysRevD.83.032009. arXiv:1011.6549 [hep-ex]
  • 10.ATLAS Collaboration, Measurement of the W boson polarization in top quark decays with the ATLAS detector. JHEP 06, 088 (2012). doi:10.1007/JHEP06(2012)088. arXiv:1205.2484 [hep-ex]
  • 11.CMS Collaboration, Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at s= 8TeV. Phys. Lett. B 762, 512 (2016). doi:10.1016/j.physletb.2016.. arXiv:1605.09047 [hep-ex]
  • 12.ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). doi:10.1088/1748-0221/3/08/S08003
  • 13.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). doi:10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [hep-ex]
  • 14.Agostinelli S, et al. GEANT4: a simulation toolkit. Nucl. Instrum. Methods A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 15.ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013,2010, http://cds.cern.ch/record/1300517
  • 16.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 17.Frixione S, Nason P, Ridolfi G. A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP. 2007;09:126. doi: 10.1088/1126-6708/2007/09/126. [DOI] [Google Scholar]
  • 18.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with Parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 19.Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 20.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 21.Sjöstrand T, Mrenna S, Skands PZ. PYTHIA 6.4 physics and manual. JHEP. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 22.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 23.Skands PZ. Tuning Monte Carlo generators: the perugia tunes. Phys. Rev. D. 2010;82:074018. doi: 10.1103/PhysRevD.82.074018. [DOI] [Google Scholar]
  • 24.Cacciari M, Czakon M, Mangano M, Mitov A, Nason P. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B. 2012;710:612. doi: 10.1016/j.physletb.2012.03.013. [DOI] [Google Scholar]
  • 25.Beneke M, Falgari P, Klein S, Schwinn C. Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys. B. 2012;855:695. doi: 10.1016/j.nuclphysb.2011.10.021. [DOI] [Google Scholar]
  • 26.Bärnreuther P, Czakon M, Mitov A. Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to qq¯tt¯+X. Phys. Rev. Lett. 2012;109:132001. doi: 10.1103/PhysRevLett.109.132001. [DOI] [PubMed] [Google Scholar]
  • 27.Czakon M, Mitov A. NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP. 2013;01:080. doi: 10.1007/JHEP01(2013)080. [DOI] [Google Scholar]
  • 28.Czakon M, Mitov A. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP. 2012;12:054. doi: 10.1007/JHEP12(2012)054. [DOI] [Google Scholar]
  • 29.Czakon M, Fiedler P, Mitov A. Total top-quark pair-production cross section at hadron colliders through O(αS4) Phys. Rev. Lett. 2013;110:252004. doi: 10.1103/PhysRevLett.110.252004. [DOI] [PubMed] [Google Scholar]
  • 30.Czakon M, Mitov A. Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. [DOI] [Google Scholar]
  • 31.Corcella G, et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP. 2001;01:010. doi: 10.1088/1126-6708/2001/01/010. [DOI] [Google Scholar]
  • 32.J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637 (1996). doi:10.1007/BF02909195, doi:DOIurl10.1007/s002880050286. arXiv:hep-ph/9601371
  • 33.Frixione S, Webber BR. Matching NLO QCD computations and parton shower simulations. JHEP. 2002;06:029. doi: 10.1088/1126-6708/2002/06/029. [DOI] [Google Scholar]
  • 34.Frixione S, Nason P, Webber BR. Matching NLO QCD and parton showers in heavy flavor production. JHEP. 2003;08:007. doi: 10.1088/1126-6708/2003/08/007. [DOI] [Google Scholar]
  • 35.ATLAS Collaboration, New ATLAS event generator tunes to 2010 data. ATL-PHYS-PUB-2011-008, 2011. http://cds.cern.ch/record/1345343
  • 36.ATLAS Collaboration, Measurement of tt¯ production with a veto on additional central jet activity in pp collisions at s=7TeVusing the ATLAS detector. Eur. Phys. J. C 72, 2043 (2012). doi:10.1140/epjc/s10052-012-2043-9. arXiv:1203.5015 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 37.S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. JHEP 09, 111 (2009). [Erratum: JHEP 02, 011 (2010)]. doi:10.1007/JHEP02(2010)011, doi:10.1088/1126-6708/2009/09/111. arXiv:0907.4076 [hep-ph]
  • 38.Re E. Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C. 2011;71:1547. doi: 10.1140/epjc/s10052-011-1547-z. [DOI] [Google Scholar]
  • 39.Frixione S, Laenen E, Motylinski P, Webber BR, White CD. Single-top hadroproduction in association with a W boson. JHEP. 2008;07:029. doi: 10.1088/1126-6708/2008/07/029. [DOI] [Google Scholar]
  • 40.Kidonakis N. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [DOI] [Google Scholar]
  • 41.Kidonakis N. NNLL resummation for s-channel single top quark production. Phys. Rev. D. 2010;81:054028. doi: 10.1103/PhysRevD.81.054028. [DOI] [Google Scholar]
  • 42.Kidonakis N. Two-loop soft anomalous dimensions for single top quark associated production with a W- or H- Phys. Rev. D. 2010;82:054018. doi: 10.1103/PhysRevD.82.054018. [DOI] [Google Scholar]
  • 43.Martin AD, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 44.Martin AD, Stirling WJ, Thorne RS, Watt G. Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C. 2009;64:653. doi: 10.1140/epjc/s10052-009-1164-2. [DOI] [Google Scholar]
  • 45.ATLAS Collaboration, Measurement of the top quark mass in the tt¯ dilepton channel from s=8TeV ATLAS data. Phys. Lett. B 761, 350 (2016). doi:10.1016/j.physletb.2016.08.042. arXiv:1606.02179 [hep-ex]
  • 46.Mangano ML, Moretti M, Piccinini F, Pittau R, Polosa AD. ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP. 2003;07:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 47.Mangano ML, Moretti M, Pittau R. Multijet matrix elements and shower evolution in hadronic collisions: Wbb¯ + n jets as a case study. Nucl. Phys. B. 2002;632:343. doi: 10.1016/S0550-3213(02)00249-3. [DOI] [Google Scholar]
  • 48.Melnikov K, Petriello F. Electroweak gauge boson production at hadron colliders through O(alpha(s)**2) Phys. Rev. D. 2006;74:114017. doi: 10.1103/PhysRevD.74.114017. [DOI] [Google Scholar]
  • 49.ATLAS Collaboration, Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV with the ATLAS detector. Eur. Phys. J. C 76, 87 (2016). doi:10.1140/epjc/s10052-016-3910-6. arXiv:1509.02358 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 50.Gleisberg T, et al. Event generation with SHERPA 1.1. JHEP. 2009;02:007. doi: 10.1088/1126-6708/2009/02/007. [DOI] [Google Scholar]
  • 51.Campbell JM, Ellis RK. An Update on vector boson pair production at hadron colliders. Phys. Rev. D. 1999;60:113006. doi: 10.1103/PhysRevD.60.113006. [DOI] [Google Scholar]
  • 52.ATLAS Collaboration, Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton–proton collisions at s=8TeV with the ATLAS Detector. ATLAS-CONF-2014-058, 2014. http://cds.cern.ch/record/1951336
  • 53.ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton–proton collision data. ATLAS-CONF-2014-032, 2014. http://cds.cern.ch/record/1706245 [DOI] [PMC free article] [PubMed]
  • 54.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 55.Cacciari M, Salam GP. Dispelling the N3 myth for the kt jet-finder. Phys. Lett. B. 2006;641:57. doi: 10.1016/j.physletb.2006.08.037. [DOI] [Google Scholar]
  • 56.W. Lampl et al., Calorimeter Clustering Algorithms: Description and Performance. ATL-LARG-PUB-2008-002, 2008. http://cds.cern.ch/record/1099735
  • 57.Cojocaru C, et al. Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region 1.6<|η|<1.8 in beam tests. Nucl. Instrum. Methods A. 2004;531:481. doi: 10.1016/j.nima.2004.05.133. [DOI] [Google Scholar]
  • 58.ATLAS Collaboration, Jet energy measurement and its systematic uncertainty in proton–proton collisions at s=7TeV with the ATLAS detector. Eur. Phys. J. C 75, 17 (2015). doi:10.1140/epjc/s10052-014-3190-y. arXiv:1406.0076 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 59.ATLAS Collaboration, Performance of b-jet identification in the ATLAS experiment. JINST 11, P04008 (2016). doi:10.1088/1748-0221/11/04/P04008. arXiv:1512.01094 [hep-ex]
  • 60.ATLAS Collaboration, Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment. ATLAS-CONF-2014-004, 2014. http://cds.cern.ch/record/1664335
  • 61.ATLAS Collaboration, Performance of missing transverse momentum reconstruction in proton–proton collisions at s=7TeV with ATLAS. Eur. Phys. J. C 72, 1844 (2012). doi:10.1140/epjc/s10052-011-1844-6. arXiv:1108.5602 [hep-ex]
  • 62.ATLAS Collaboration, Selection of jets produced in proton–proton collisions with the ATLAS detector using 2011 data. ATLAS-CONF-2012-020, 2012. http://cds.cern.ch/record/1430034
  • 63.Erdmann J, et al. A likelihood-based reconstruction algorithm for top-quark pairs and the KLFitter framework. Nucl. Instrum. Methods A. 2014;748:18. doi: 10.1016/j.nima.2014.02.029. [DOI] [Google Scholar]
  • 64.ATLAS Collaboration, Measurements of spin correlation in top–antitop quark events from proton–proton collisions at s=7TeV using the ATLAS detector. Phys. Rev. D 90, 112016 (2014). doi:10.1103/PhysRevD.90.112016. arXiv:1407.4314 [hep-ex]
  • 65.ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data. Eur. Phys. J. C 74, 2941 (2014). doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 66.ATLAS Collaboration, Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton–proton collisions at s=7TeV in 2010. Eur. Phys. J. C 74, 3034 (2014). doi:10.1140/epjc/s10052-014-3034-9. arXiv:1404.4562 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 67.ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton–proton collision data. Eur. Phys. J. C 72, 1909 (2012). doi:10.1140/epjc/s10052-012-1909-1. arXiv:1110.3174 [hep-ex]
  • 68.ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. Eur. Phys. J. C 74, 3130 (2014). doi:10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 69.ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC run 1 data. Eur. Phys. J. C 74, 3071 (2014). doi:10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 [hep-ex]
  • 70.ATLAS Collaboration, Jet energy resolution in proton–proton collisions at s=7TeV recorded in 2010 with the ATLAS detector. Eur. Phys. J. C 73, 2306 (2013). doi:10.1140/epjc/s10052-013-2306-0. arXiv:1210.6210 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 71.ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at s=8 TeV using the ATLAS detector. Eur. Phys. J. C 76, 581 (2016). doi:10.1140/epjc/s10052-016-4395-z. arXiv: 1510.03823 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 72.ATLAS Collaboration, Pile-up subtraction and suppression for jets in ATLAS. ATLAS-CONF-2013-083, 2013. http://cds.cern.ch/record/1570994
  • 73.M. Botje et al., The PDF4LHC Working Group Interim Recommendations (2011). arXiv:1101.0538 [hep-ph]
  • 74.Ball RD, et al. Parton distributions with LHC data. Nucl. Phys. B. 2013;867:244. doi: 10.1016/j.nuclphysb.2012.10.003. [DOI] [Google Scholar]
  • 75.ATLAS Collaboration, Luminosity determination in pp collisions at s = 8 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 76, 653 (2016). doi:10.1140/epjc/s10052-016-4466-1. arXiv:1608.03953 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 76.Aguilar-Saavedra JA, Carvalho J, Castro NF, Veloso F, Onofre A. Probing anomalous Wtb couplings in top pair decays. Eur. Phys. J. C. 2007;50:519. doi: 10.1140/epjc/s10052-007-0289-4. [DOI] [Google Scholar]
  • 77.Castro N, Erdmann J, Grunwald C, Kröninger K, Rosien N-A. EFTfitter–a tool for interpreting measurements in the context of effective field theories. Eur. Phys. J. C. 2016;76:432. doi: 10.1140/epjc/s10052-016-4280-9. [DOI] [Google Scholar]
  • 78.ATLAS Collaboration, Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector. JHEP 04, 023 (2016). doi:10.1007/JHEP04(2016)023. arXiv:1510.03764 [hep-ex]
  • 79.CMS Collaboration, Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at s=8TeV. JHEP 06, 090 (2014). doi:10.1007/JHEP06(2014)090. arXiv:1403.7366 [hep-ex]
  • 80.ATLAS Collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at s=7TeV with the ATLAS detector. Phys. Rev. D 90, 112006 (2014). doi:10.1103/PhysRevD.90.112006. arXiv:1406.7844 [hep-ex]
  • 81.B. Grzadkowski, M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay. Phys. Rev. D 78, 077501 (2008). [Erratum: Phys. Rev. D 84, 059903 (2011)]. doi:10.1103/PhysRevD.84.059903, doi:10.1103/PhysRevD.78.077501. arXiv:0802.1413 [hep-ph]
  • 82.ATLAS Collaboration, ATLAS Computing Acknowledgements 2016–2017. ATL-GEN-PUB-2016-002, 2016. http://cds.cern.ch/record/2202407

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES