Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jun;87(11):4294–4298. doi: 10.1073/pnas.87.11.4294

Protein phosphorylation in pancreatic islets induced by 3-phosphoglycerate and 2-phosphoglycerate.

S B Pek 1, M Usami 1, N Bilir 1, C Fischer-Bovenkerk 1, T Ueda 1
PMCID: PMC54095  PMID: 2161535

Abstract

We have shown previously that 3-phosphoglycerate, which is a glycolytic metabolite of glucose, induces protein phosphorylation in bovine and rat brain and in rat heart, kidney, liver, lung, and whole pancreas. Since glycolytic metabolism of glucose is of paramount importance in insulin release, we considered the possibility that 3-phosphoglycerate may act as a coupling factor, and we searched for evidence for the existence of 3-phosphoglycerate-dependent protein phosphorylation systems in freshly isolated normal rat pancreatic islets. Membrane and cytosol fractions were incubated with [gamma-32P]ATP and appropriate test substances and were subjected to NaDodSO4/PAGE and autoradiography. As little as 0.005 mM 3-phosphoglycerate or 2-phosphoglycerate stimulated the phosphorylation of a 65-kDa cytosol protein by as early as 0.25 min. The phosphate bond of the 65-kDa phosphoprotein was sufficiently stable to withstand dialysis; the radioactivity could not be chased out by subsequent exposure to ATP, ADP, 3-phosphoglycerate, or 2,3-bisphosphoglycerate. Moreover, cAMP, cGMP, phorbol 12-myristate 13-acetate, or calcium failed to stimulate the phosphorylation of the 65-kDa protein. Phosphoglycerate-dependent protein phosphorylation in islets may have relevance to stimulation of insulin secretion.

Full text

PDF
4294

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berne C. The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J. 1975 Dec;152(3):667–673. doi: 10.1042/bj1520667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deutscher J., Saier M. H., Jr ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6790–6794. doi: 10.1073/pnas.80.22.6790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunlop M. E., Larkins R. G. Pancreatic islets synthesize phospholipids de novo from glucose via acyl-dihydroxyacetone phosphate. Biochem Biophys Res Commun. 1985 Oct 30;132(2):467–473. doi: 10.1016/0006-291x(85)91157-x. [DOI] [PubMed] [Google Scholar]
  4. Gotoh M., Maki T., Kiyoizumi T., Satomi S., Monaco A. P. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985 Oct;40(4):437–438. doi: 10.1097/00007890-198510000-00018. [DOI] [PubMed] [Google Scholar]
  5. Harrison D. E., Ashcroft S. J. Effects of Ca2+, calmodulin and cyclic AMP on the phosphorylation of endogenous proteins by homogenates of rt islets of langerhans. Biochim Biophys Acta. 1982 Feb 2;714(2):313–319. doi: 10.1016/0304-4165(82)90339-7. [DOI] [PubMed] [Google Scholar]
  6. Idahl L. A. Glycolytic intermediates and signals for carbohydrate-induced insulin release. Horm Metab Res Suppl. 1980;Suppl 10:20–26. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  9. Malaisse W. J., Malaisse-Lagae F., Sener A. Coupling factors in nutrient-induced insulin release. Experientia. 1984 Oct 15;40(10):1035–1043. doi: 10.1007/BF01971449. [DOI] [PubMed] [Google Scholar]
  10. Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
  11. Meglasson M. D., Matschinsky F. M. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3-4):163–214. doi: 10.1002/dmr.5610020301. [DOI] [PubMed] [Google Scholar]
  12. Pace C. S., Tarvin J. T., Neighbors A. S., Pirkle J. A., Greider M. H. Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells. Diabetes. 1980 Nov;29(11):911–918. doi: 10.2337/diab.29.11.911. [DOI] [PubMed] [Google Scholar]
  13. Reiss N., Kanety H., Schlessinger J. Five enzymes of the glycolytic pathway serve as substrates for purified epidermal-growth-factor-receptor kinase. Biochem J. 1986 Nov 1;239(3):691–697. doi: 10.1042/bj2390691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rose Z. B. The enzymology of 2,3-bisphosphoglycerate. Adv Enzymol Relat Areas Mol Biol. 1980;51:211–253. doi: 10.1002/9780470122969.ch5. [DOI] [PubMed] [Google Scholar]
  15. Sale E. M., White M. F., Kahn C. R. Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase. J Cell Biochem. 1987 Jan;33(1):15–26. doi: 10.1002/jcb.240330103. [DOI] [PubMed] [Google Scholar]
  16. Sasaki R., Ikura K., Sugimoto E., Chiba H. Purification of bisphosphoglyceromutase, 2,3-bisphosphoglycerate phosphatase and phosphoglyceromutase from human erthrocytes. Three enzyme activities in one protein. Eur J Biochem. 1975 Jan 15;50(3):581–593. doi: 10.1111/j.1432-1033.1975.tb09899.x. [DOI] [PubMed] [Google Scholar]
  17. Suzuki S., Oka H., Yasuda H., Ikeda M., Cheng P. Y., Oda T. Effect of glucagon and cyclic adenosine 3',5'-monophosphate on protein phosphorylation in rat pancreatic islets. Endocrinology. 1983 Jan;112(1):348–352. doi: 10.1210/endo-112-1-348. [DOI] [PubMed] [Google Scholar]
  18. Suzuki S., Oka H., Yasuda H., Ikeda M., Cheng P. Y., Oda T. Effect of glucose on protein phosphorylation in rat pancreatic islets. Biochem Biophys Res Commun. 1981 Apr 15;99(3):987–993. doi: 10.1016/0006-291x(81)91259-6. [DOI] [PubMed] [Google Scholar]
  19. Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J Biol Chem. 1977 Jul 25;252(14):5155–5163. [PubMed] [Google Scholar]
  20. Ueda T., Plagens D. G. 3-Phosphoglycerate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1229–1233. doi: 10.1073/pnas.84.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES