Abstract
1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 microM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 microM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased approximately 7-fold after 48 hr with 500 microM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calcutt N. A., Tomlinson D. R., Willars G. B. Ganglioside treatment of streptozotocin-diabetic rats prevents defective axonal transport of 6-phosphofructokinase activity. J Neurochem. 1988 May;50(5):1478–1483. doi: 10.1111/j.1471-4159.1988.tb03033.x. [DOI] [PubMed] [Google Scholar]
- Cannella M. S., Roisen F. J., Ogawa T., Sugimoto M., Ledeen R. W. Comparison of epi-GM3 with GM3 and GM1 as stimulators of neurite outgrowth. Brain Res. 1988 Mar 1;467(1):137–143. doi: 10.1016/0165-3806(88)90075-2. [DOI] [PubMed] [Google Scholar]
- Díaz-Nido J., Avila J. Characterization of proteins immunologically related to brain microtubule-associated protein MAP-1B in non-neural cells. J Cell Sci. 1989 Apr;92(Pt 4):607–620. doi: 10.1242/jcs.92.4.607. [DOI] [PubMed] [Google Scholar]
- Evans A. E., Chatten J., D'Angio G. J., Gerson J. M., Robinson J., Schnaufer L. A review of 17 IV-S neuroblastoma patients at the children's hospital of philadelphia. Cancer. 1980 Mar 1;45(5):833–839. doi: 10.1002/1097-0142(19800301)45:5<833::aid-cncr2820450502>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Felipo V., Miñana M. D., Azorín I., Grisolía S. Induction of rat brain tubulin following ammonium ingestion. J Neurochem. 1988 Oct;51(4):1041–1045. doi: 10.1111/j.1471-4159.1988.tb03065.x. [DOI] [PubMed] [Google Scholar]
- Girard P. R., Kuo J. F. Protein kinase C and its 80-kilodalton substrate protein in neuroblastoma cell neurite outgrowth. J Neurochem. 1990 Jan;54(1):300–306. doi: 10.1111/j.1471-4159.1990.tb13315.x. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
- Karpiak S. E., Li Y. S., Mahadik S. P. Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function. Stroke. 1987 Jan-Feb;18(1):184–187. doi: 10.1161/01.str.18.1.184. [DOI] [PubMed] [Google Scholar]
- Kim J. Y., Goldenring J. R., DeLorenzo R. J., Yu R. K. Gangliosides inhibit phospholipid-sensitive Ca2+-dependent kinase phosphorylation of rat myelin basic proteins. J Neurosci Res. 1986;15(2):159–166. doi: 10.1002/jnr.490150205. [DOI] [PubMed] [Google Scholar]
- Kreutter D., Kim J. Y., Goldenring J. R., Rasmussen H., Ukomadu C., DeLorenzo R. J., Yu R. K. Regulation of protein kinase C activity by gangliosides. J Biol Chem. 1987 Feb 5;262(4):1633–1637. [PubMed] [Google Scholar]
- Leskawa K. C., Hogan E. L. Quantitation of the in vitro neuroblastoma response to exogenous, purified gangliosides. J Neurosci Res. 1985;13(4):539–550. doi: 10.1002/jnr.490130409. [DOI] [PubMed] [Google Scholar]
- Mahadik S. P., Vilim F., Korenovsky A., Karpiak S. E. GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality. J Neurosci Res. 1988 Aug;20(4):479–483. doi: 10.1002/jnr.490200411. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Posypanova G. A., Severin S. E., Kondratyev A. D. Effect of protein kinase modulators on the induction of morphological differentiation of pheochromocytoma PC12 cells by nerve and fibroblast growth factors. Biotechnol Appl Biochem. 1990 Feb;12(1):20–27. [PubMed] [Google Scholar]
- Prasad K. N. Differentiation of neuroblastoma cells in culture. Biol Rev Camb Philos Soc. 1975 May;50(2):129–165. doi: 10.1111/j.1469-185x.1975.tb01055.x. [DOI] [PubMed] [Google Scholar]
- Prasad K. N., Vernadakis A. Morphological and biochemical study in x-ray- and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp Cell Res. 1972 Jan;70(1):27–32. doi: 10.1016/0014-4827(72)90177-2. [DOI] [PubMed] [Google Scholar]
- Roisen F. J., Bartfeld H., Nagele R., Yorke G. Ganglioside stimulation of axonal sprouting in vitro. Science. 1981 Oct 30;214(4520):577–578. doi: 10.1126/science.7291999. [DOI] [PubMed] [Google Scholar]
- Sabel B. A., Gottlieb J., Schneider G. E. Exogenous GM1 gangliosides protect against retrograde degeneration following posterior neocortex lesions in developing hamsters. Brain Res. 1988 Sep 6;459(2):373–380. doi: 10.1016/0006-8993(88)90655-5. [DOI] [PubMed] [Google Scholar]
- Spüler M., Dimpfel W., Tüllner H. U. Effect of gangliosides on nerve conduction velocity during diabetic neuropathy in the rat. Arch Int Pharmacodyn Ther. 1987 Jun;287(2):211–223. [PubMed] [Google Scholar]
- Tsuji S., Arita M., Nagai Y. GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem. 1983 Jul;94(1):303–306. doi: 10.1093/oxfordjournals.jbchem.a134344. [DOI] [PubMed] [Google Scholar]
- Tsuji S., Yamashita T., Tanaka M., Nagai Y. Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem. 1988 Feb;50(2):414–423. doi: 10.1111/j.1471-4159.1988.tb02928.x. [DOI] [PubMed] [Google Scholar]
- Wada H., Ohno S., Kubo K., Taya C., Tsuji S., Yonehara S., Suzuki K. Cell type-specific expression of the genes for the protein kinase C family: down regulation of mRNAs for PKC alpha and nPKC epsilon upon in vitro differentiation of a mouse neuroblastoma cell line neuro 2a. Biochem Biophys Res Commun. 1989 Nov 30;165(1):533–538. doi: 10.1016/0006-291x(89)91102-9. [DOI] [PubMed] [Google Scholar]
- Wilberz S., Herberg L., Renold A. E. Gangliosides in vivo reduce diabetes incidence in non-obese diabetic mice. Diabetologia. 1988 Nov;31(11):855–857. doi: 10.1007/BF00277490. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Laat S. W., van der Saag P. T. The plasma membrane as a regulatory site in growth and differentiation of neuroblastoma cells. Int Rev Cytol. 1982;74:1–54. doi: 10.1016/s0074-7696(08)61168-7. [DOI] [PubMed] [Google Scholar]