Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jun;87(11):4340–4344. doi: 10.1073/pnas.87.11.4340

Serum amine oxidase activity contributes to crisis in mouse embryo cell lines.

R E Parchment 1, A Lewellyn 1, D Swartzendruber 1, G B Pierce 1
PMCID: PMC54105  PMID: 2349241

Abstract

This paper reports the results of experiments to test the hypothesis that crisis of spontaneous transformation is caused by the hydrogen peroxide and/or aldehydes generated from endogenous polyamines by serum amine oxidase [amine: oxygen oxidoreductase (deaminating), EC 1.4.3.6]. After 4-5 weeks of culture, crisis occurred in 16 of 29 cell lines derived from limb buds of embryos from SJL/J, C3H, and CD-1 mice. In contrast, after the same time in culture but in medium supplemented with aminoguanidine, which inhibits serum amine oxidase, crisis occurred in only 1 of 41 cell lines. Protection against crisis was maximal in cell lines of SJL/J embryos, in which the incidence of crisis fell from 7 of 9 in untreated controls of 0 to 12 in the presence of 2 mM aminoguanidine. 2-Mercaptoethanol at 150-300 microM, which protects cells from serum amine oxidase-dependent polyamine toxicity, also protected the cell lines against crisis. These protected cell lines retained proliferative potential, diploid DNA content, and the mixture of cell types found in the primary cultures. These results indicate that cytotoxic catabolites generated by serum amine oxidase caused at least a large portion, but perhaps not all, of the cellular damage that leads to crisis in mouse embryo cell lines.

Full text

PDF
4340

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Todaro G. J. Development of 3T3-like lines from Balb-c mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol. 1968 Oct;72(2):141–148. doi: 10.1002/jcp.1040720208. [DOI] [PubMed] [Google Scholar]
  2. Ali-Osman F., Maurer H. R. Stimulation of clonal tumor cell growth in vitro by inhibiting the serum polyamine oxidase activity. J Cancer Res Clin Oncol. 1983;106(1):17–20. doi: 10.1007/BF00399892. [DOI] [PubMed] [Google Scholar]
  3. Arden K. C., Pathak S., Swartzendruber D. E., Zimmer S. G. Cytogenetic characterization and DNA content analysis of Ad 2-transformed rat embryo brain cells. Anticancer Res. 1984 Nov-Dec;4(6):367–374. [PubMed] [Google Scholar]
  4. Birnboim H. C. Superoxide anion may trigger DNA strand breaks in human granulocytes by acting at a membrane target. Ann N Y Acad Sci. 1988;551:83–94. doi: 10.1111/j.1749-6632.1988.tb22322.x. [DOI] [PubMed] [Google Scholar]
  5. Borek C. Oncogenes, hormones, and free-radical processes in malignant transformation in vitro. Ann N Y Acad Sci. 1988;551:95–102. doi: 10.1111/j.1749-6632.1988.tb22323.x. [DOI] [PubMed] [Google Scholar]
  6. Gahl W. A., Pitot H. C. Reversal by aminoguanidine of the inhibition of proliferation of human fibroblasts by spermidine and spermine. Chem Biol Interact. 1978 Jul;22(1):91–98. doi: 10.1016/0009-2797(78)90152-7. [DOI] [PubMed] [Google Scholar]
  7. HAYFLICK L., MOORHEAD P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec;25:585–621. doi: 10.1016/0014-4827(61)90192-6. [DOI] [PubMed] [Google Scholar]
  8. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  9. Henle K. J., Moss A. J., Nagle W. A. Mechanism of spermidine cytotoxicity at 37 degrees C and 43 degrees C in Chinese hamster ovary cells. Cancer Res. 1986 Jan;46(1):175–182. [PubMed] [Google Scholar]
  10. Kraemer P. M., Ray F. A., Bartholdi M. F., Cram L. S. Spontaneous in vitro neoplastic evolution: selection of specific karyotypes in Chinese hamster cells. Cancer Genet Cytogenet. 1987 Aug;27(2):273–287. doi: 10.1016/0165-4608(87)90010-0. [DOI] [PubMed] [Google Scholar]
  11. Kraemer P. M., Ray F. A., Brothman A. R., Bartholdi M. F., Cram L. S. Spontaneous immortalization rate of cultured Chinese hamster cells. J Natl Cancer Inst. 1986 Apr;76(4):703–709. doi: 10.1093/jnci/76.4.703. [DOI] [PubMed] [Google Scholar]
  12. Loo D. T., Fuquay J. I., Rawson C. L., Barnes D. W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science. 1987 Apr 10;236(4798):200–202. doi: 10.1126/science.3494308. [DOI] [PubMed] [Google Scholar]
  13. Parchment R. E., Pierce G. B. Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res. 1989 Dec 1;49(23):6680–6686. [PubMed] [Google Scholar]
  14. Parshad R., Sanford K. K., Jones G. M., Tarone R. E. Fluorescent light-induced chromosome damage and its prevention in mouse cells in culture. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1830–1833. doi: 10.1073/pnas.75.4.1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pedersen J. Z., Marcocci L., Rossi L., Mavelli I., Rotilio G. First electron spin resonance evidence for the generation of the daunomycin free radical and superoxide by red blood cell membranes. Ann N Y Acad Sci. 1988;551:121–127. doi: 10.1111/j.1749-6632.1988.tb22326.x. [DOI] [PubMed] [Google Scholar]
  16. Pierce G. B., Gramzinski R. A., Parchment R. E. Programmed cell death in the blastocyst. Ann N Y Acad Sci. 1989;567:182–186. doi: 10.1111/j.1749-6632.1989.tb16470.x. [DOI] [PubMed] [Google Scholar]
  17. Pierce G. B., Lewellyn A. L., Parchment R. E. Mechanism of programmed cell death in the blastocyst. Proc Natl Acad Sci U S A. 1989 May;86(10):3654–3658. doi: 10.1073/pnas.86.10.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce G. B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol. 1983 Oct;113(1):117–124. [PMC free article] [PubMed] [Google Scholar]
  19. Reznikoff C. A., Brankow D. W., Heidelberger C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973 Dec;33(12):3231–3238. [PubMed] [Google Scholar]
  20. Schaeffer W. I. Usage of vertebrate, invertebrate and plant cell, tissue and organ culture terminology. In Vitro. 1984 Jan;20(1):19–24. doi: 10.1007/BF02633327. [DOI] [PubMed] [Google Scholar]
  21. Smith R. A., Williamson D. S., Cohen S. M. Identification of 3,N4-propanodeoxycytidine 5'-monophosphate formed by the reaction of acrolein with deoxycytidine 5'-monophosphate. Chem Res Toxicol. 1989 Jul-Aug;2(4):267–271. doi: 10.1021/tx00010a009. [DOI] [PubMed] [Google Scholar]
  22. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watanabe S., Narahashi T. Cation selectivity of acetylcholine-activated ionic channel of frog endplate. J Gen Physiol. 1979 Nov;74(5):615–628. doi: 10.1085/jgp.74.5.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamamoto K., Inoue S., Yamazaki A., Yoshinaga T., Kawanishi S. Site-specific DNA damage induced by cobalt(II) ion and hydrogen peroxide: role of singlet oxygen. Chem Res Toxicol. 1989 Jul-Aug;2(4):234–239. doi: 10.1021/tx00010a004. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES