Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1958 May;33(3):199–206. doi: 10.1104/pp.33.3.199

Properties of Nolase in Extracts from Pea Seed. 1,2

Gene W Miller 1
PMCID: PMC541061  PMID: 16655113

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Evans H. J. Studies on Cytochrome Reductase in Higher Plants. Plant Physiol. 1955 Sep;30(5):437–444. doi: 10.1104/pp.30.5.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. Loewus F. A., Stafford H. A. Observations on the Incorporation of C into Tartaric Acid and the Labeling Pattern of D-Glucose from an Excised Grape Leaf Administered L-Ascorbic Acid-6-C. Plant Physiol. 1958 Mar;33(2):155–156. doi: 10.1104/pp.33.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MALMSTROM B. G., WESTLUND L. E. The effect of pH on the interaction of enolase with activating metal ions. Arch Biochem Biophys. 1956 Mar;61(1):186–196. doi: 10.1016/0003-9861(56)90331-9. [DOI] [PubMed] [Google Scholar]
  5. MARTIN W. R., FOSTER J. W. Production of trans-L-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartartic acid. J Bacteriol. 1955 Oct;70(4):405–414. doi: 10.1128/jb.70.4.405-414.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SHILO M., STANIER R. Y. The utilization of the tartaric acids by pseudomonads. J Gen Microbiol. 1957 Apr;16(2):482–490. doi: 10.1099/00221287-16-2-482. [DOI] [PubMed] [Google Scholar]
  7. SHILO M. The enzymic conversion of the tartaric acids to oxaloacetic acid. J Gen Microbiol. 1957 Apr;16(2):472–481. doi: 10.1099/00221287-16-2-472. [DOI] [PubMed] [Google Scholar]
  8. Stafford H. A. Tartaric Acid Dehydrogenase Activity in Higher Plants. Plant Physiol. 1957 Jul;32(4):338–345. doi: 10.1104/pp.32.4.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stutz R. E., Burris R. H. PHOTOSYNTHESIS AND METABOLISM OF ORGANIC ACIDS IN HIGHER PLANTS. Plant Physiol. 1951 Apr;26(2):226–243. doi: 10.1104/pp.26.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TEWFIK S., STUMPF P. K. Carbohydrate metabolism in higher plants. IV. Observations on triose phosphate dehydrogenase. J Biol Chem. 1951 Oct;192(2):519–526. [PubMed] [Google Scholar]
  11. Utter M. F., Werkman C. H. Dissimilation of phosphoglyceric acid by Escherichia coli. Biochem J. 1942 Jun;36(5-6):485–493. doi: 10.1042/bj0360485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. VAN SLYKE D. D., PLAZIN J., WEISIGER J. R. Reagents for the Van Slyke-Folch wet carbon combustion. J Biol Chem. 1951 Jul;191(1):299–304. [PubMed] [Google Scholar]
  13. VAN SLYKE D. D., STEELE R., PLAZIN J. Determination of total carbon and its radioactivity. J Biol Chem. 1951 Oct;192(2):769–805. [PubMed] [Google Scholar]
  14. VARNER J. E., BURRELL R. C. Use of C14 in the study of the acid metabolism of Bryophyllum calycinum. Arch Biochem. 1950 Feb;25(2):280–287. [PubMed] [Google Scholar]
  15. VICKERY H. B., PALMER J. K. The metabolism of the organic acids of tobacco leaves. VII. Effect of culture of excised leaves in solutions of (+)-tartrate. J Biol Chem. 1954 Mar;207(1):275–285. [PubMed] [Google Scholar]
  16. VICKERY H. B. The metabolism of the organic acids of tobacco leaves. XIV. On the uptake of (+)-tartaric acid from solutions in the range pH 3 to pH 6. J Biol Chem. 1957 Aug;227(2):943–949. [PubMed] [Google Scholar]
  17. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. Decomposition of Tartrates by the Coliform Bacteria. J Bacteriol. 1946 Sep;52(3):311–325. [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES