Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1958 Sep;33(5):311–321. doi: 10.1104/pp.33.5.311

Auxin Activity of Some Indole Derivatives. 1,2

Kenneth V Thimann 1
PMCID: PMC541092  PMID: 16655138

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARUAH P., SWAIN T. The effect of L-ascorbic acid on the in vitro activity of polyphenoloxidase from potato. Biochem J. 1953 Oct;55(3):392–399. doi: 10.1042/bj0550392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOWERS J. Z., SCOTT K. G. Distribution and excretion of electrolytes after acute whole-body irradiation injury. I. Studies with radiopotassium. Proc Soc Exp Biol Med. 1951 Nov;78(2):645–648. doi: 10.3181/00379727-78-19169. [DOI] [PubMed] [Google Scholar]
  3. FRIEDLAENDER M., MOORE D. H., LOVE R., BROWN R. A., KOPROWSKI H. Developement of anopheles A virus in the endoplasmic reticulum of Ehrlich ascites tumour cells. Nature. 1955 May 7;175(4462):812–813. doi: 10.1038/175812b0. [DOI] [PubMed] [Google Scholar]
  4. GREENBERG J. B., GALSTON A. W., SHAW K. N., ARMSTRONG M. D. Formation and auxin activity of indole-3-glycolic acid. Science. 1957 May 17;125(3255):992–993. doi: 10.1126/science.125.3255.992. [DOI] [PubMed] [Google Scholar]
  5. Lewis D. A. Protoplasmic Streaming in Plants Sensitive and Insensitive to Chilling Temperatures. Science. 1956 Jul 13;124(3211):75–76. doi: 10.1126/science.124.3211.75. [DOI] [PubMed] [Google Scholar]
  6. Lieberman M., Biale J. B. Cofactor Requirements for Oxidation of Alpha-Keto Acids by Sweet Potato Mitochondria. Plant Physiol. 1956 Nov;31(6):425–429. doi: 10.1104/pp.31.6.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lieberman M., Biale J. B. Oxidative Phosphorylation by Sweet Potato Mitochondria and Its Inhibition by Polyphenols. Plant Physiol. 1956 Nov;31(6):420–424. doi: 10.1104/pp.31.6.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MILLER E. V., HEILMAN A. S. Ascorbic acid and physiological breakdown in the fruits of the pineapple (Ananas comosus L. Merr). Science. 1952 Nov 7;116(3019):505–506. doi: 10.1126/science.116.3019.505. [DOI] [PubMed] [Google Scholar]
  9. Muir R. M., Hansch C. On the Mechanism of Action of Growth Regulators. Plant Physiol. 1953 Apr;28(2):218–232. doi: 10.1104/pp.28.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paleg L. G., Muir R. M. Surface Activity as Related to Physiological Activity of Plant Growth-Regulators. Plant Physiol. 1952 Apr;27(2):285–292. doi: 10.1104/pp.27.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RAY P. M., THIMANN K. V. The destruction of indoleacetic acid. I. Action of an enzyme from Omphalia flavida. Arch Biochem Biophys. 1956 Sep;64(1):175–192. doi: 10.1016/0003-9861(56)90253-3. [DOI] [PubMed] [Google Scholar]
  12. SHEPPARD C. W., BEYL G. E. Cation exchange in mammalian erythrocytes. III. The prolytic effect of x-rays on human cells. J Gen Physiol. 1951 May;34(5):691–704. doi: 10.1085/jgp.34.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. UDENFRIEND S., TITUS E., WEISSBACH H., PETERSON R. E. Biogenesis and metabolism of 5-hydroxyindole compounds. J Biol Chem. 1956 Mar;219(1):335–344. [PubMed] [Google Scholar]
  14. UDENFRIEND S., TITUS E., WEISSBACH H. The identification of 5-hydroxy-3-indoleacetic acid in normal urine and a method for its assay. J Biol Chem. 1955 Oct;216(2):499–505. [PubMed] [Google Scholar]
  15. YANOFSKY C. The participation of ribose derivatives in the conversion of anthranilic acid to indole by extracts of Escherichia coli. Biochim Biophys Acta. 1955 Apr;16(4):594–595. doi: 10.1016/0006-3002(55)90286-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES