Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jun;87(11):4396–4400. doi: 10.1073/pnas.87.11.4396

Differential interactions of human choriogonadotropin and its antagonistic aglycosylated analog with their receptor.

I Ji 1, T H Ji 1
PMCID: PMC54117  PMID: 2349245

Abstract

Human choriogonadotropin (hCG) is a heterodimeric hormone consisting of an alpha subunit and a beta subunit. hCG and aglycosylated hCG (aghCG) have similar receptor binding affinities but differ in their ability to activate hormone-responsive adenylate cyclase. aghCG is an effective antagonist. The mechanisms of this antagonism and interactions of antagonistic aghCG with the receptor are not understood. To address this critical question, we have examined the interaction of this hormone analog with the receptor. The hormone receptor on porcine granulosa cells is a glycoprotein of 86 kDa and thas three domains of 24 kDa, 28 kDa, and 34 kDa, which are disulfide-linked. They undergo proteolysis, particularly when bound to the hormones, to produce three polypeptide components. These three receptor components can readily be identified through the use of affinity labeling with the hormones. Affinity labeling with an amino-specific homobifunctional reagent and subsequent cleavage indicate that hCG is cross-linked directly to the 24-kDa receptor component. In contrast, aghCG is cross-linked directly to the 34-kDa component. The peptide map of the cross-linked aghCG-34-kDa receptor component produced by papain treatment is different from the peptide map of the cross-linked complex of hCG-24-kDa component. This difference in receptor binding may be a factor determining the success or failure of signal transduction from the receptor to the effector system, guanine nucleotide-binding regulatory protein, and adenylate cyclase.

Full text

PDF
4396

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir S. M., Barker S. A., Butt W. R., Crooke A. C. Purification and lability of human follicle-stimulating hormone. Nature. 1966 Mar 12;209(5028):1092–1093. doi: 10.1038/2091092a0. [DOI] [PubMed] [Google Scholar]
  2. Channing C. P., Sakai C. N., Bahl O. P. Role of the carbohydrate residues of human chorionic gonadotropin in binding and stimulation of adenosine 3',5'-monophosphate accumulation by porcine granulosa cells. Endocrinology. 1978 Aug;103(2):341–348. doi: 10.1210/endo-103-2-341. [DOI] [PubMed] [Google Scholar]
  3. Goverman J. M., Parsons T. F., Pierce J. G. Enzymatic deglycosylation of the subunits of chorionic gonadotropin. Effects on formation of tertiary structure and biological activity. J Biol Chem. 1982 Dec 25;257(24):15059–15064. [PubMed] [Google Scholar]
  4. Ji I., Bock J. H., Ji T. H. Composition and peptide maps of cross-linked human choriogonadotropin-receptor complexes on porcine granulosa cells. J Biol Chem. 1985 Oct 15;260(23):12815–12821. [PubMed] [Google Scholar]
  5. Ji I., Ji T. H. Both alpha and beta subunits of human choriogonadotropin photoaffinity label the hormone receptor. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5465–5469. doi: 10.1073/pnas.78.9.5465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalyan N. K., Bahl O. P. Role of carbohydrate in human chorionic gonadotropin. Effect of deglycosylation on the subunit interaction and on its in vitro and in vivo biological properties. J Biol Chem. 1983 Jan 10;258(1):67–74. [PubMed] [Google Scholar]
  7. Kellokumpu S., Rajaniemi H. Involvement of plasma membrane enzymes in the proteolytic cleavage of luteinizing hormone receptor. Endocrinology. 1985 Feb;116(2):707–714. doi: 10.1210/endo-116-2-707. [DOI] [PubMed] [Google Scholar]
  8. Kessler M. J., Mise T., Ghai R. D., Bahl O. P. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979 Aug 25;254(16):7909–7914. [PubMed] [Google Scholar]
  9. Kessler M. J., Reddy M. S., Shah R. H., Bahl O. P. Structures of N-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979 Aug 25;254(16):7901–7908. [PubMed] [Google Scholar]
  10. Keutmann H. T., McIlroy P. J., Bergert E. R., Ryan R. J. Chemically deglycosylated human chorionic gonadotropin subunits: characterization and biological properties. Biochemistry. 1983 Jun 21;22(13):3067–3072. doi: 10.1021/bi00282a007. [DOI] [PubMed] [Google Scholar]
  11. Loosfelt H., Misrahi M., Atger M., Salesse R., Vu Hai-Luu Thi M. T., Jolivet A., Guiochon-Mantel A., Sar S., Jallal B., Garnier J. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science. 1989 Aug 4;245(4917):525–528. doi: 10.1126/science.2502844. [DOI] [PubMed] [Google Scholar]
  12. Manjunath P., Sairam M. R. Biochemical, biological, and immunological properties of chemically deglycosylated human choriogonadotropin. J Biol Chem. 1982 Jun 25;257(12):7109–7115. [PubMed] [Google Scholar]
  13. Matzuk M. M., Keene J. L., Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem. 1989 Feb 15;264(5):2409–2414. [PubMed] [Google Scholar]
  14. Nishimura R., Raymond M. J., Ji I., Rebois R. V., Ji T. H. Photoaffinity labeling of the gonadotropin receptor with native, asialo, and deglycosylated choriogonadotropin. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6327–6331. doi: 10.1073/pnas.83.17.6327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pierce J. G., Parsons T. F. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341. [DOI] [PubMed] [Google Scholar]
  16. Rebois R. V., Fishman P. H. Deglycosylated human chorionic gonadotropin. An antagonist to desensitization and down-regulation of the gonadotropin receptor-adenylate cyclase system. J Biol Chem. 1983 Nov 10;258(21):12775–12778. [PubMed] [Google Scholar]
  17. Sairam M. R., Bhargavi G. N. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science. 1985 Jul 5;229(4708):65–67. doi: 10.1126/science.2990039. [DOI] [PubMed] [Google Scholar]
  18. Shin J., Ji I., Ji T. H. Disulfides of the lutropin receptor. J Biol Chem. 1986 Jun 5;261(16):7501–7506. [PubMed] [Google Scholar]
  19. Sojar H. T., Bahl O. P. Characterization of rat ovarian lutropin receptor. Role of thiol groups in receptor association. J Biol Chem. 1989 Feb 15;264(5):2552–2559. [PubMed] [Google Scholar]
  20. Van Hall E. V., Vaitukaitis J. L., Ross G. T., Hickman J. W., Ashwell G. Immunological and biological activity of HCG following progressive desialylation. Endocrinology. 1971 Feb;88(2):456–464. doi: 10.1210/endo-88-2-456. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES