Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Jul;56(1):39–43. doi: 10.1104/pp.56.1.39

Studies on Pea Ribosomal Proteins

Conformational and Biological Activity Changes of Ribosomal Subunits Derived by NH4Cl Dissociation 1,2

Chu-Yung Lin a, Subrina Li-Li Chia a, Robert L Travis a, Joe L Key a
PMCID: PMC541294  PMID: 16659254

Abstract

Ribosomal subunits prepared by NH4Cl dissociation (0.5 m) of the monomeric ribosomes were much less active in in vitro protein synthesis than those prepared by KCl dissociation. The decrease in activity correlated with a detachment of some proteins (L2 and L9 as shown by gel electrophoresis) within the 60S ribosomal subunits. Subunits prepared with 0.3 m NH4Cl retained L2 and L9, but the activity remained low. Incubation of these 60S subunits in TKM buffer (50 mm tris [pH 7.5], 20 mm KCl, and 5 mm MgCl2) for 20 min at 37 C restored the activity almost to the level of those obtained by KCl dissociation. Treatment of the 0.3 m NH4Cl-derived 60S subunits with a protein reagent, Procion brilliant blue, prior to extraction of the ribosomal proteins resulted in the loss of L2 and L9, showing that these proteins were made accessible for dye binding. These observations suggest that a considerable degree of unfolding of the 60S subunit occurs at 0.3 m NH4Cl (this apparently leads to a preferential detachment of L2 and L9 at 0.5 m NH4Cl) and that the activity of the purified subunits depends not only on the presence of L2 and L9 but also on the organization of these proteins within the 60S subunits.

Full text

PDF
39

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arpin M., Reboud A. M., Reboud J. P. Conformational changes of large ribosomal subunits of rat liver, induced by some monovalent cations. Biochim Biophys Acta. 1972 Aug 16;277(1):134–139. doi: 10.1016/0005-2787(72)90360-7. [DOI] [PubMed] [Google Scholar]
  2. Brot N., Marcel R., Yamasaki E., Weissbach H. Further studies on the role of 50 S ribosomal proteins in protein synthesis. J Biol Chem. 1973 Oct 25;248(20):6952–6956. [PubMed] [Google Scholar]
  3. Delaunay J., Mathieu C., Schapira G. Eukaryotic ribosomal proteins. Interspecific and intraspecific comparisons by two-dimensional polyacrylamide-gel electrophoresis. Eur J Biochem. 1972 Dec 18;31(3):561–564. doi: 10.1111/j.1432-1033.1972.tb02565.x. [DOI] [PubMed] [Google Scholar]
  4. Dzionara M., Kaltschmidt E., Wittmann H. G. Ribosomal proteins. 8. Molecular weights of isolated ribosomal proteins of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1909–1913. doi: 10.1073/pnas.67.4.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freyssinet G., Schiff J. A. The Chloroplast and Cytoplasmic Ribosomes of Euglena: II. Characterization of Ribosomal Proteins. Plant Physiol. 1974 Apr;53(4):543–554. doi: 10.1104/pp.53.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gualerzi C., Cammarano P. Comparative electrophoretic studies on the protein of chloroplast and cytoplasmic ribosomes of spinach leaves. Biochim Biophys Acta. 1969 Sep 17;190(1):170–186. doi: 10.1016/0005-2787(69)90166-x. [DOI] [PubMed] [Google Scholar]
  7. Gualerzi C., Cammarano P. Species specificity of ribosomal proteins from chloroplast and cytoplasmic ribosomes of higher plants. Electrophoretic studies. Biochim Biophys Acta. 1970 Jan 21;199(1):203–213. doi: 10.1016/0005-2787(70)90709-4. [DOI] [PubMed] [Google Scholar]
  8. Hamada K., Yang P., Heintz R., Schweet R. Some properties of reticulocyte ribosomal subunits. Arch Biochem Biophys. 1968 May;125(2):598–603. doi: 10.1016/0003-9861(68)90618-8. [DOI] [PubMed] [Google Scholar]
  9. Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
  10. Hoober J. K., Blobel G. Characterization of the chloroplastic and cytoplasmic ribosomes of Chlamydomonas reinhardi. J Mol Biol. 1969 Apr 14;41(1):121–138. doi: 10.1016/0022-2836(69)90130-2. [DOI] [PubMed] [Google Scholar]
  11. Hultin T. The use of procion blue as a molecular probe in the study of ribosomal structure. Eur J Biochem. 1969 Jul;9(4):579–584. doi: 10.1111/j.1432-1033.1969.tb00648.x. [DOI] [PubMed] [Google Scholar]
  12. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1276–1282. doi: 10.1073/pnas.67.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kurland C. G. Structure and function of the bacterial ribosome. Annu Rev Biochem. 1972;41(10):377–408. doi: 10.1146/annurev.bi.41.070172.002113. [DOI] [PubMed] [Google Scholar]
  14. Lin C. Y., Key J. L., Bracker C. E. Association of D-RNA with Polyribosomes in the Soybean Root. Plant Physiol. 1966 Jun;41(6):976–982. doi: 10.1104/pp.41.6.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin C. Y., Key J. L. Dissocation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J Mol Biol. 1967 Jun 14;26(2):237–247. doi: 10.1016/0022-2836(67)90294-x. [DOI] [PubMed] [Google Scholar]
  16. Lin C. Y., Key J. L. Dissociation of N(2) Gas-induced Monomeric Ribosomes and Functioning of the Derived Subunits in Protein Synthesis in Pea. Plant Physiol. 1971 Nov;48(5):547–552. doi: 10.1104/pp.48.5.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin T. E., Rolleston F. S., Low R. B., Wool I. G. Dissociation and reassociation of skeletal muscle ribosomes. J Mol Biol. 1969 Jul 14;43(1):135–149. doi: 10.1016/0022-2836(69)90084-9. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nomura M. Assembly of bacterial ribosomes. Fed Proc. 1972 Jan-Feb;31(1):18–20. [PubMed] [Google Scholar]
  20. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  21. Reboud A. M., Buisson M., Reboud J. P. Ribosomal subunits from rat liver. 2. Effect of cations on isolated subunits. Eur J Biochem. 1972 Apr 11;26(3):354–359. doi: 10.1111/j.1432-1033.1972.tb01774.x. [DOI] [PubMed] [Google Scholar]
  22. Sherton C. C., Wool I. G. Determination of the number of proteins in liver ribosomes and ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1972 Jul 25;247(14):4460–4467. [PubMed] [Google Scholar]
  23. Vasconcelos A. C., Bogorad L. Proteins of cytoplasmic, chloroplast, and mitochondrial ribosomes of some plants. Biochim Biophys Acta. 1971 Jan 28;228(2):492–502. doi: 10.1016/0005-2787(71)90054-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES