Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 May;53(5):699–704. doi: 10.1104/pp.53.5.699

The Role of Galactolipids in Spinach Chloroplast Lamellar Membranes

I. Partial Purification of a Bean Leaf Galactolipid Lipase and Its Action on Subchloroplast Particles 1,2

Mark M Anderson a,3, Richard E McCarty a, Elizabeth A Zimmer a
PMCID: PMC541428  PMID: 16658772

Abstract

A galactolipid lipase has been isolated and partially purified from the chloroplast fraction of the primary leaves of Phaseolus vulgaris var. Kentucky Wonder. The lipase hydrolyzed monogalactosyl diglyceride rapidly and phosphatidyl choline relatively slowly. Triolein and p-nitrophenyl stearate were not hydrolyzed.

Spinach subchloroplast particles were excellent substrates for the lipase. Initial rates of fatty acid release from subchloroplast particles at 30 C by the lipase as high as 60 microequivalents per minute per milligram protein were observed. At completion of the reaction, about 2.7 microequivalents of fatty acid were liberated per milligram of chlorophyll in the subchloroplast particles, indicating that major amounts of lipid in the particles were rapidly attacked by the lipase.

The treatment of subchloroplast particles with the lipase resulted in a rapid inhibition of light-dependent electron flow. This inhibition was largely prevented when the incubation was carried out in the presence of high concentrations of defatted bovine serum albumin. These results suggest that when precautions are taken to prevent the binding of fatty acids to the subchloroplast particles, large amounts of lipid may be removed without a marked effect on electron flow.

Full text

PDF
699

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. M., McCarty R. E. Rapid and sensitive assay for free fatty acids using rhodamine 6G. Anal Biochem. 1972 Jan;45(1):260–270. doi: 10.1016/0003-2697(72)90026-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. M., McCarty R. E. The effects of plastocyanin on photophosphorylation. Biochim Biophys Acta. 1969 Oct 21;189(2):193–206. doi: 10.1016/0005-2728(69)90047-4. [DOI] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberger E. S., Park R. B. Effect of hydrolytic enzymes on the photosynthetic efficiency and morphology of chloroplasts. Plant Physiol. 1966 Dec;41(10):1591–1600. doi: 10.1104/pp.41.10.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  6. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  7. GRESSEL J., AVRON M. THE EFFECTS OF STRUCTURAL DEGRADATION ON THE COUPLED PHOTOCHEMICAL ACTIVITIES OF ISOLATED CHLOROPLASTS. Biochim Biophys Acta. 1965 Jan 25;94:31–41. doi: 10.1016/0926-6585(65)90005-1. [DOI] [PubMed] [Google Scholar]
  8. Helmsing P. J. Purification and properties of galactolipase. Biochim Biophys Acta. 1969 May 27;178(3):519–533. doi: 10.1016/0005-2744(69)90221-6. [DOI] [PubMed] [Google Scholar]
  9. McCarty R. E., Jagendorf A. T. Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol. 1965 Jul;40(4):725–735. doi: 10.1104/pp.40.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McCarty R. E. Relation of photophosphorylation to hydrogen ion transport. Biochem Biophys Res Commun. 1968 Jul 11;32(1):37–43. doi: 10.1016/0006-291x(68)90422-1. [DOI] [PubMed] [Google Scholar]
  11. NELSON W. L., CIACCIO E. I., HESS G. P. A rapid method for the quantitative assay of proteolytic enzymes. Anal Biochem. 1961 Feb;2:39–44. doi: 10.1016/0003-2697(61)90037-9. [DOI] [PubMed] [Google Scholar]
  12. NICHOLS B. W. SEPARATION OF THE LIPIDS OF PHOTOSYNTHETIC TISSUES: IMPROVEMENTS IN ANALYSIS BY THIN-LAYER CHROMATOGRAPHY. Biochim Biophys Acta. 1963 Aug 27;70:417–422. doi: 10.1016/0006-3002(63)90771-6. [DOI] [PubMed] [Google Scholar]
  13. Okayama S., Epel B. L., Erixon K., Lozier R., Butler W. L. The effects of lipase on spinach and Chlamydomonas chloroplasts. Biochim Biophys Acta. 1971 Dec 7;253(2):476–482. doi: 10.1016/0005-2728(71)90050-8. [DOI] [PubMed] [Google Scholar]
  14. SASTRY P. S., KATES M. HYDROLYSIS OF MONOGALACTOSYL AND DIGALACTOSYL DIGLYCERIDES BY SPECIFIC ENZYMES IN RUNNER-BEAN LEAVES. Biochemistry. 1964 Sep;3:1280–1287. doi: 10.1021/bi00897a016. [DOI] [PubMed] [Google Scholar]
  15. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  16. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  17. Wintermans J. F., Helmsing P. J., Polman B. J., van Gisbergen J., Collard J. Galactolipid transformations and photochemical activities of spinach chloroplasts. Biochim Biophys Acta. 1969 Sep 16;189(1):95–105. doi: 10.1016/0005-2728(69)90230-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES