Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870

Isolation of Intact Plastids from a Range of Plant Tissues 1

Benjamin J Miflin a,2, Harry Beevers a
PMCID: PMC541465  PMID: 16658807

Abstract

A technique for the isolation of intact plastids from spinach (Spinacia oleracea) and pea (Pisum sativum) leaves, pea roots and castor bean (Ricinus communis) endosperm is described. This technique involves brief centrifugation of whole homogenates on density gradients. Intact plastids were located in the gradient by assaying for triose phosphate isomerase activity. Contamination of the plastic peak with mitochondria and microbodies was estimated by measurement of cytochrome oxidase and catalase, respectively. For three of the four tissues the level of contamination of the plastids by these organelles was 2% or less. The sedimentation behavior of microbodies from different tissues is discussed.

Full text

PDF
870

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON N. G. Studies on isolated cell components. VIII. High resolution gradient differential centrifugation. Exp Cell Res. 1955 Dec;9(3):446–459. doi: 10.1016/0014-4827(55)90075-6. [DOI] [PubMed] [Google Scholar]
  2. Anderson L. E., Advani V. R. Chloroplast and cytoplasmic enzymes: three distinct isoenzymes associated with the reductive pentose phosphate cycle. Plant Physiol. 1970 May;45(5):583–585. doi: 10.1104/pp.45.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
  5. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  6. Dalling M. J., Tolbert N. E., Hageman R. H. Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim Biophys Acta. 1972 Dec 14;283(3):505–512. doi: 10.1016/0005-2728(72)90266-6. [DOI] [PubMed] [Google Scholar]
  7. Dalling M. J., Tolbert N. E., Hageman R. H. Intracellular location of nitrate reductase and nitrite reductase. II. Wheat roots. Biochim Biophys Acta. 1972 Dec 14;283(3):513–519. doi: 10.1016/0005-2728(72)90267-8. [DOI] [PubMed] [Google Scholar]
  8. Huang A. H., Beevers H. Isolation of microbodies from plant tissues. Plant Physiol. 1971 Nov;48(5):637–641. doi: 10.1104/pp.48.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobson A. B. A procedure for isolation of proplastids from etiolated maize leaves. J Cell Biol. 1968 Jul;38(1):238–244. doi: 10.1083/jcb.38.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEECH R. M. THE ISOLATION OF STRUCTURALLY INTACT CHLOROPLASTS. Biochim Biophys Acta. 1964 May 25;79:637–639. doi: 10.1016/0926-6577(64)90235-9. [DOI] [PubMed] [Google Scholar]
  11. Leonard R. T., Hansen D., Hodges T. K. Membrane-bound Adenosine Triphosphatase Activities of Oat Roots. Plant Physiol. 1973 Apr;51(4):749–754. doi: 10.1104/pp.51.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lips S. H., Avissar Y. Plant-leaf microbodies as the intracellular site of nitrate reductase and nitrite reductase. Eur J Biochem. 1972 Aug 18;29(1):20–24. doi: 10.1111/j.1432-1033.1972.tb01952.x. [DOI] [PubMed] [Google Scholar]
  13. Price C. A., Hirvonen A. P. Sedimentation rates of plastids in an analytical zonal rotor. Biochim Biophys Acta. 1967 Nov 28;148(2):531–538. doi: 10.1016/0304-4165(67)90152-3. [DOI] [PubMed] [Google Scholar]
  14. Rocha V., Ting I. P. Preparation of cellular plant organelles from spinach leaves. Arch Biochem Biophys. 1970 Oct;140(2):398–407. doi: 10.1016/0003-9861(70)90081-0. [DOI] [PubMed] [Google Scholar]
  15. Schnarrenberger C., Oeser A., Tolbert N. E. Isolation of Plastids from Sunflower Cotyledons during Germination. Plant Physiol. 1972 Jul;50(1):55–59. doi: 10.1104/pp.50.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Still C. C., Price C. A. Bulk separation of chloroplasts with intact membranes in the zonal centrifuge. Biochim Biophys Acta. 1967 Jun 13;141(1):176–178. doi: 10.1016/0304-4165(67)90257-7. [DOI] [PubMed] [Google Scholar]
  17. Thomson W. W., Foster P., Leech R. M. The Isolation of Proplastids from Roots of Vicia faba. Plant Physiol. 1972 Feb;49(2):270–272. doi: 10.1104/pp.49.2.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  19. Zschoche W. C., Ting I. P. Malate Dehydrogenases of Pisum sativum: Tissue Distribution and Properties of the Particulate Forms. Plant Physiol. 1973 Jun;51(6):1076–1081. doi: 10.1104/pp.51.6.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES