Abstract
The leaf blade of cotton (Gossypium hirsutum L. cv. Stoneville 213) was investigated as the initial site of ethylene action in abscission. Ethylene applied at 14 μl/l to intact 3-week-old plants caused abscission of the third true leaf within 3 days. However, keeping only the leaf blade of this leaf in air during ethylene treatment of the rest of the plant completely prevented its abscission for up to 7 days. This inhibition of abscission was apparently the result of continued auxin production in the blade since (a) the application of an auxin transport inhibitor to the petiole of the air-treated leaf blade restored ethylene sensitivity to the leaf in terms of abscission; (b) repeated applications of naphthaleneacetic acid to the leaf blade of the third true leaf, when the entire plant was exposed to ethylene, had the same preventive effect on abscission of this leaf as keeping its leaf blade in air; and (c) the inhibitory effect of ethylene on auxin transport in the petiole, which is reduced by auxin treatment, was also reduced by placing the leaf blade in air.
The reverse treatment of exposing only the leaf blade of the third true leaf to 14 μl/l of ethylene, while the rest of the plant was kept in air, also did not cause abscission for up to 5 days. Auxin transport in the petioles of these leaves, however, was inhibited over 80% within 2 days and this effect presumably accounted for their increased sensitivity to ethylene during the subsequent exposures of the whole leaf to the gas.
These results suggest that an initial and essential function of applied ethylene in abscission is to reduce the amount of auxin transported out of the leaf blade. This reduction together with the inhibitory effect of ethylene on auxin transport in the petiole reduces the auxin level at the abscission zone to a point where the cells in this region become responsive to the more direct action of the gas (e.g., enzyme induction and secretion). This sequence of events accounts for the lack of abscission unless ethylene is applied to both the leaf blade and the abscission zone.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles F. B. Abscission: role of cellulase. Plant Physiol. 1969 Mar;44(3):447–452. doi: 10.1104/pp.44.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Holm R. E. Enhancement of RNA synthesis, protein synthesis, and abscission by ethylene. Plant Physiol. 1966 Oct;41(8):1337–1342. doi: 10.1104/pp.41.8.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Holm R. E., Gahagan H. E. Abscission: the role of aging. Plant Physiol. 1967 Oct;42(10):1351–1356. doi: 10.1104/pp.42.10.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B. Role of RNA and protein synthesis in abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1577–1586. [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M. Auxin transport: a new synthetic inhibitor. Plant Physiol. 1972 Sep;50(3):322–327. doi: 10.1104/pp.50.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M., Morgan P. W. Abscission: the role of ethylene modification of auxin transport. Plant Physiol. 1971 Aug;48(2):208–212. doi: 10.1104/pp.48.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dela Fuente R. K., Leopold A. C. Kinetics of abscission in the bean petiole explant. Plant Physiol. 1969 Feb;44(2):251–254. doi: 10.1104/pp.44.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dela Fuente R. K., Leopold A. C. Senescence processes in leaf abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1496–1502. [PMC free article] [PubMed] [Google Scholar]
- Ernest L. C., Valdovinos J. G. Regulation of Auxin Levels in Coleus blumei by Ethylene. Plant Physiol. 1971 Oct;48(4):402–406. doi: 10.1104/pp.48.4.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
- Jacobs W. P. Hormonal regulation of leaf abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1480–1495. [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W., Durham J. I. Abscission: potentiating action of auxin transport inhibitors. Plant Physiol. 1972 Sep;50(3):313–318. doi: 10.1104/pp.50.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W., Durham J. I. Leaf Age and Ethylene-induced Abscission. Plant Physiol. 1973 Dec;52(6):667–670. doi: 10.1104/pp.52.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W. Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic Acid. Plant Physiol. 1969 Mar;44(3):337–341. doi: 10.1104/pp.44.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poovaiah B. W. Peroxidase Activity in the Abscission Zone of Bean Leaves during Abscission. Plant Physiol. 1973 Sep;52(3):263–267. doi: 10.1104/pp.52.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoessl A., Venis M. A. Determination of submicrogram levels of indole-3-acetic acid: a new, highly specific method. Anal Biochem. 1970 Apr;34(2):344–351. doi: 10.1016/0003-2697(70)90118-1. [DOI] [PubMed] [Google Scholar]
- Valdovinos J. G., Ernest L. C., Henry E. W. Effect of ethylene and gibberellic Acid on auxin synthesis in plant tissues. Plant Physiol. 1967 Dec;42(12):1803–1806. doi: 10.1104/pp.42.12.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]