Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Feb;55(2):356–359. doi: 10.1104/pp.55.2.356

Stimulation of Phospholipid Biosynthesis during Frost Hardening of Winter Wheat 1

Claude Willemot a
PMCID: PMC541615  PMID: 16659082

Abstract

Lipids were labeled with 33P during frost hardening of two varieties of winter wheat (Triticum aestivum), hardy Kharkov and much less hardy Champlein. The main labeled compounds were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylglycerol. With time of incorporation the proportion of the radioactivity incorporated into the lipids increased in phosphatidylcholine, especially in Kharkov and at 1 C. During hardening, phospholipid synthesis was greatly stimulated in Kharkov, but much less in Champlein. The proportion of the phospholipids synthesized changed only little with hardening, with a trend towards an increase in phosphatidylcholine. Increased phospholipid synthesis does not seem to be a prerequisite to hardening in winter wheat. However, a high rate of phospholipid synthesis may be required to maintain frost resistance.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. BREGOFF H. M., ROBERTS E., DELWICHE C. C. Paper chromatography of quaternary ammonium bases and related compounds. J Biol Chem. 1953 Dec;205(2):565–574. [PubMed] [Google Scholar]
  3. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  4. Grenier G., Willemot C. Lipid changes in roots of frost hardy and less hardy alfalfa varieties under hardening conditions. Cryobiology. 1974 Aug;11(4):324–331. doi: 10.1016/0011-2240(74)90009-1. [DOI] [PubMed] [Google Scholar]
  5. Kuiper P. J. Lipids in alfalfa leaves in relation to cold hardiness. Plant Physiol. 1970 Jun;45(6):684–686. doi: 10.1104/pp.45.6.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Redshaw E. S., Zalik S. Changes in lipids of cereal seedlings during vernalization. Can J Biochem. 1968 Sep;46(9):1093–1097. doi: 10.1139/o68-163. [DOI] [PubMed] [Google Scholar]
  7. Siminovitch D., Rheaume B., Pomeroy K., Lepage M. Phospholipid, protein, and nucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells. Cryobiology. 1968 Nov-Dec;5(3):202–225. doi: 10.1016/s0011-2240(68)80164-6. [DOI] [PubMed] [Google Scholar]
  8. de la Roche I. A., Andrews C. J. Changes in Phospholipid Composition of a Winter Wheat Cultivar during Germination at 2 C and 24 C. Plant Physiol. 1973 Mar;51(3):468–473. doi: 10.1104/pp.51.3.468. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES