Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Feb;55(2):421–426. doi: 10.1104/pp.55.2.421

Photoreceptor Pigment for Blue Light in Neurospora crassa1

Victor Muñoz a,2,3, Warren L Butler a
PMCID: PMC541627  PMID: 16659094

Abstract

Irradiating the mycelium of Neurospora crassa with moderate intensities of blue light causes a reversible photoreduction of a b-type cytochrome. The action spectrum for the photoreduction of cytochrome b is very similar to the absorption spectrum of flavin pigments. Prolonged irradiation of the mycelium with strong blue light irreversibly bleaches flavin-like pigments and as these pigments are bleached the photoresponse of cytochrome b is lost. We conclude from these and other data that a flavin is the photoreceptor pigment for the photoreduction of cytochrome b. The close similarity between the action spectrum for the photoreduction of cytochrome b and action spectra for a number of physiological photoresponses suggests that this photoreceptor pigment controls a wide variety of photobiological processes in a wide diversity of organisms.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce V. G., Minis D. H. Circadian clock action spectrum in a photoperiodic moth. Science. 1969 Feb 7;163(3867):583–585. doi: 10.1126/science.163.3867.583. [DOI] [PubMed] [Google Scholar]
  2. Butler W. L. Absorption spectroscopy of biological materials. Methods Enzymol. 1972;24:3–25. doi: 10.1016/0076-6879(72)24052-6. [DOI] [PubMed] [Google Scholar]
  3. Chance B., Mayer D., Legallais V. A dual-wavelength spectrophotometer and fluorometer using interference filters. Anal Biochem. 1971 Aug;42(2):494–504. doi: 10.1016/0003-2697(71)90064-9. [DOI] [PubMed] [Google Scholar]
  4. Kowallik W. Action spectrum for an enhancement of endogenous respiration by light in chlorella. Plant Physiol. 1967 May;42(5):672–676. doi: 10.1104/pp.42.5.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Muñoz V., Brody S., Butler W. L. Photoreceptor pigment for blue light responses in Neurospora crassa. Biochem Biophys Res Commun. 1974 May 7;58(1):322–327. doi: 10.1016/0006-291x(74)90930-9. [DOI] [PubMed] [Google Scholar]
  6. Poff K. L., Butler W. L. Spectral characteristics of the photoreceptor pigment of phototaxis in Dictyostelium discoideum. Photochem Photobiol. 1974 Sep;20(3):241–244. doi: 10.1111/j.1751-1097.1974.tb06573.x. [DOI] [PubMed] [Google Scholar]
  7. RILLING H. C. ON THE MECHANISM OF PHOTOINDUCTION OF CAROTENOID SYNTHESIS. Biochim Biophys Acta. 1964 May 25;79:464–475. doi: 10.1016/0926-6577(64)90212-8. [DOI] [PubMed] [Google Scholar]
  8. Sargent M. L., Briggs W. R. The effects of light on a circadian rhythm of conidiation in neurospora. Plant Physiol. 1967 Nov;42(11):1504–1510. doi: 10.1104/pp.42.11.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. VERNON L. P. Photochemical oxidation and reduction reactions catalyzed by flavin nucleotides. Biochim Biophys Acta. 1959 Nov;36:177–185. doi: 10.1016/0006-3002(59)90082-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES