Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Mar;55(3):485–490. doi: 10.1104/pp.55.3.485

Protoheme Turnover and Chlorophyll Synthesis in Greening Barley Tissue 1

Paul A Castelfranco a,2, Owen T G Jones a
PMCID: PMC541643  PMID: 16659107

Abstract

Studies in which 14C-labeled precursors were fed to etiolated barley leaves (Hordeum vulgare L. var. Proctor) yielded chlorophyll and protoheme having similar specific radioactivities. These findings indicate: (a) there appears to be a rapid turnover of protoheme in the absence of net synthesis; (b) both pigments probably originate from a single 5-aminolevulinic acid pool; (c) the efficient utilization of glutamate-1-14C and the relatively poor utilization of glycine-2-14C suggest that 5-aminolevulinic acid is probably synthesized by a pathway other than 5-aminolevulinic acid synthetase (succinyl CoA-glycine succinyltransferase) in agreement with previously published work; (d) protoheme turnover appears to be faster under conditions which allow for rapid chlorophyll accumulation; (e) difference spectra indicate that mitochondrial cytochromes make a relatively minor contribution to the total heme in barley leaves. These findings are discussed in the light of current knowledge about tetrapyrrole regulation in photosynthetic organisms.

Full text

PDF
485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beale S. I., Castelfranco P. A. 14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun. 1973 May 1;52(1):143–149. doi: 10.1016/0006-291x(73)90966-2. [DOI] [PubMed] [Google Scholar]
  2. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):291–296. doi: 10.1104/pp.53.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: II. Formation of C-delta-Aminolevulinic Acid from Labeled Precursors in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):297–303. doi: 10.1104/pp.53.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bock K. W., Siekevitz P. Turnover of heme and protein moieties of rat liver microsomal cytochrome b5. Biochem Biophys Res Commun. 1970 Oct 23;41(2):374–380. doi: 10.1016/0006-291x(70)90514-0. [DOI] [PubMed] [Google Scholar]
  5. Bunn H. F., Jandl J. H. Exchange of heme among hemoglobin molecules. Proc Natl Acad Sci U S A. 1966 Sep;56(3):974–978. doi: 10.1073/pnas.56.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Castelfranco P. A., Tang W. J., Bolar M. L. Membrane transformations in aging potato tuber slices. Plant Physiol. 1971 Dec;48(6):795–800. doi: 10.1104/pp.48.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorchein A. Control of magnesium-protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Role of light, oxygen, and electron and energy transfer. Biochem J. 1973 Aug;134(4):833–845. doi: 10.1042/bj1340833d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haddock B. A. The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. Biochem J. 1973 Dec;136(4):877–884. doi: 10.1042/bj1360877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lascelles J., Hatch T. P. Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides: possible role of heme in regulation of the branched biosynthetic pathway. J Bacteriol. 1969 May;98(2):712–720. doi: 10.1128/jb.98.2.712-720.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PERKINS H. J., ROBERTS D. W. Purification of chlorophylls, pheophytins and pheophorbides for specific activity determinations. Biochim Biophys Acta. 1962 Apr 23;58:486–498. doi: 10.1016/0006-3002(62)90059-8. [DOI] [PubMed] [Google Scholar]
  11. PORRA R. J., JONES O. T. Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem J. 1963 Apr;87:181–185. doi: 10.1042/bj0870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Plesnicar M., Bendall D. S. The photochemical activities and electron carriers of developing barley leaves. Biochem J. 1973 Nov;136(3):803–812. doi: 10.1042/bj1360803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rebeiz C. A., Castelfranco P. A. Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):33–37. doi: 10.1104/pp.47.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES