Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Apr;55(4):602–606. doi: 10.1104/pp.55.4.602

Metabolism of Uronic Acids in Plant Tissues

Partial Purification and Properties of Uronic Acid Oxidase from Citrus Leaves 1

Joseph Riov a,2
PMCID: PMC541672  PMID: 16659133

Abstract

A new enzyme, named uronic acid oxidase, was extracted and purified 67-fold by (NH4)2SO4 fractionation and CM-Sephadex column chromatography from ethylene-treated Shamouti orange (Citrus sinensis L. Osbeck) leaves. The enzyme catalyzes the oxidation of d-galacturonic acid and d-glucuronic acid to the corresponding hexaric acids in the presence of molecular oxygen with the production of H2O2. The pH optimum for the oxidation of d-galacturonic acid and d-glucuronic acid is between 7 and 8. The enzyme is highly specific for d-galacturonic acid and d-glucuronic acid. It also oxidizes polygalacturonic acid. The apparent Michaelis constant values of the enzyme for d-galacturonic acid and d-glucuronic acid are 0.13 and 0.5 mm, respectively. The molecular weight of the enzyme, as determined by gel filtration, is about 98,000. The enzyme is inhibited by sodium hydrosulfite and other sulfites, indicating that it contains a flavin prosthetic group.

Full text

PDF
602

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLUMENTHAL H. J., FISH D. C. Bacterial conversion of D-glucarate to glycerate and pyruvate. Biochem Biophys Res Commun. 1963 May 3;11:239–243. doi: 10.1016/0006-291x(63)90341-3. [DOI] [PubMed] [Google Scholar]
  2. Bateman D. F., Kosuge T., Kilgore W. W. Purification and properties of uronate dehydrogenase from Pseudomonas syringae. Arch Biochem Biophys. 1970 Jan;136(1):97–105. doi: 10.1016/0003-9861(70)90331-0. [DOI] [PubMed] [Google Scholar]
  3. Chang Y. F., Feingold D. S. D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J Bacteriol. 1970 Apr;102(1):85–96. doi: 10.1128/jb.102.1.85-96.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang Y. F., Feingold D. S. Hexuronic acid dehydrogenase of Agrobacterium tumefaciens. J Bacteriol. 1969 Sep;99(3):667–673. doi: 10.1128/jb.99.3.667-673.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KESSLER G., NEUFELD E. F., FEINGOLD D. S., HASSID W. Z. Metabolism of D-glucuronic acid and D-galacturonic acid by Phaseolus aureus seedlings. J Biol Chem. 1961 Feb;236:308–312. [PubMed] [Google Scholar]
  6. LOEWUS F. A., KELLY S. The metabolism of p-galacturonic acid and its methyl ester in the detached ripening strawberry. Arch Biochem Biophys. 1961 Dec;95:483–493. doi: 10.1016/0003-9861(61)90180-1. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. MASSEY V., GIBSON Q. H. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS. Fed Proc. 1964 Jan-Feb;23:18–29. [PubMed] [Google Scholar]
  9. Massey V., Müller F., Feldberg R., Schuman M., Sullivan P. A., Howell L. G., Mayhew S. G., Matthews R. G., Foust G. P. The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem. 1969 Aug 10;244(15):3999–4006. [PubMed] [Google Scholar]
  10. Sadahiro R., Hinohara Y., Yamamoto A., Kawada M. Some aspects of D-glucuronolactone dehydrogenation by guinea pig liver enzyme [EC 1.1.1.70]. J Biochem. 1966 Mar;59(3):216–222. [PubMed] [Google Scholar]
  11. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES