Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Apr;55(4):745–748. doi: 10.1104/pp.55.4.745

Growth and Development of Soybean (Glycine max [L.] Merr.) Pods

CO2 Exchange and Enzyme Studies 1

Bruno Quebedeaux a, Raymond Chollet a
PMCID: PMC541699  PMID: 16659160

Abstract

The rates of CO2 exchange and 14CO2 incorporation in the light and dark and the activities of several photosynthetic, photorespiratory, and respiratory enzymes of soybean (Glycine max [L.] Merr. cv. Wye) reproductive structures were determined at weekly intervals from anthesis to pod maturity. At all stages of pod development soybean reproductive structures were found to be incapable of net photosynthesis under the experimental conditions employed, but capable of gross photosynthesis and light-induced 14CO2 uptake. Consistent with the lack of net photosynthesis throughout the development of the reproductive structure, the maximum in vitro activity of ribulose 1,5-bisphosphate carboxylase (EC 4.1.1.39) in pod tissue was only 3% of that in leaf extracts when expressed on a fresh weight basis. We concluded that the major role of the reproductive structure of the soybean with respect to photosynthetic carbon metabolism is the reassimilation of its respiratory CO2.

Full text

PDF
745

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chollet R. Photosynthetic carbon metabolism in isolated maize bundle sheath strands. Plant Physiol. 1973 Apr;51(4):787–792. doi: 10.1104/pp.51.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Forrester M. L., Krotkov G., Nelson C. D. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 1966 Mar;41(3):422–427. doi: 10.1104/pp.41.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hill J. E., Breidenbach R. W. Proteins of Soybean Seeds: II. Accumulation of the Major Protein Components during Seed Development and Maturation. Plant Physiol. 1974 May;53(5):747–751. doi: 10.1104/pp.53.5.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Quebedeaux B., Hardy R. W. Reproductive Growth and Dry Matter Production of Glycine max (L.) Merr. in Response to Oxygen Concentration. Plant Physiol. 1975 Jan;55(1):102–107. doi: 10.1104/pp.55.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES