Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Apr;55(4):782–785. doi: 10.1104/pp.55.4.782

Water Stress and Protein Synthesis

II. Interaction between Water Stress, Hydrostatic Pressure, and Abscisic Acid on the Pattern of Protein Synthesis in Avena Coleoptiles 1

R S Dhindsa a,2, R E Cleland a
PMCID: PMC541706  PMID: 16659167

Abstract

Water stress causes a reduction in hydrostatic pressure and can cause an increase in abscisic acid in plant tissues. To assess the possible role of abscisic acid and hydrostatic pressure in water stress effects, we have compared the effects of water stress, abscisic acid, and an imposed hydrostatic pressure on the rate and pattern of protein synthesis in Avena coleoptiles. Water stress reduces the rate and changes the pattern of protein synthesis as judged by a double labeling ratio technique, Abscisic acid reduces the rate but does not alter the pattern of protein synthesis. Gibberellic acid reverses the abscisic acid-induced but not the stress-induced inhibition of protein synthesis. The effect of hydrostatic pressure depends on the gas used. With a 19: 1 N2-air mixture, the rate of protein synthesis is increased in stressed but not in turgid tissues. An imposed hydrostatic pressure alters the pattern of synthesis in stressed tissues, but does not restore the pattern to that found in turgid tissues. Because of the differences in response, we conclude that water stress does not affect protein synthesis via abscisic acid or reduced hydrostatic pressure.

Full text

PDF
782

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Zioni A., Itai C., Vaadia Y. Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol. 1967 Mar;42(3):361–365. doi: 10.1104/pp.42.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chrispeels M. J. Mechanism of osmotic regulation of hydrolase synthesis in aleurone cells of barley: inhibition of protein synthesis. Biochem Biophys Res Commun. 1973 Jul 2;53(1):99–104. doi: 10.1016/0006-291x(73)91406-x. [DOI] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Varner J. E. Hormonal control of enzyme synthesis: on the mode of action of gibberellic Acid and abscisin in aleurone layers of barley. Plant Physiol. 1967 Jul;42(7):1008–1016. doi: 10.1104/pp.42.7.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dhindsa R. S., Cleland R. E. Water stress and protein synthesis: I. Differential inhibition of protein synthesis. Plant Physiol. 1975 Apr;55(4):778–781. doi: 10.1104/pp.55.4.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferrari T. E., Varner J. E. Substrate induction of nitrate reductase in barley aleurone layers. Plant Physiol. 1969 Jan;44(1):85–88. doi: 10.1104/pp.44.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gutknecht J. Salt transport in Valonia: inhibition of potassium uptake by small hydrostatic pressures. Science. 1968 Apr 5;160(3823):68–70. doi: 10.1126/science.160.3823.68. [DOI] [PubMed] [Google Scholar]
  8. Hsiao T. C. Rapid Changes in Levels of Polyribosomes in Zea mays in Response to Water Stress. Plant Physiol. 1970 Aug;46(2):281–285. doi: 10.1104/pp.46.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones R. L. Inhibition of Gibberellic Acid-induced alpha-Amylase Formation by Polyethylene Glycol and Mannitol. Plant Physiol. 1969 Jan;44(1):101–104. doi: 10.1104/pp.44.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuiper P. J. Potato ATPase: sensitivity to hydrostatic pressure of a cold labile form. Biochim Biophys Acta. 1971 Nov 13;250(2):443–445. doi: 10.1016/0005-2744(71)90201-4. [DOI] [PubMed] [Google Scholar]
  11. Mizrahi Y., Blumenfeld A., Richmond A. E. Abscisic Acid and transpiration in leaves in relation to osmotic root stress. Plant Physiol. 1970 Jul;46(1):169–171. doi: 10.1104/pp.46.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zeevaart J. A. (+)-abscisic Acid content of spinach in relation to photoperiod and water stress. Plant Physiol. 1971 Jul;48(1):86–90. doi: 10.1104/pp.48.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES