Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 May;55(5):890–892. doi: 10.1104/pp.55.5.890

Ribulose Diphosphate Carboxylase Synthesis in Euglena

Increased Enzyme Activity after Transferring Regreening Cells to Darkness

J Michael Lord 1, Michael J Merrett 1
PMCID: PMC541728  PMID: 16659186

Abstract

The transfer of dark-grown cultures of Euglena gracilis Klebs strain Z regreening in the light back into darkness resulted in a dramatic increase in ribulose diphosphate carboxylase activity. On a culture volume basis activity increased 4-fold over a 24-hour dark period, although on a protein basis activity declined because of rapid cell division. Mixed assays with light- and dark-growing cell extracts provided no evidence for the removal of an inhibitor of ribulose diphosphate carboxylase upon transferring regreening cells back to darkness. Although ribulose diphosphate carboxylase activity increased over a 24-hour dark period, there was no concomitant increase in the potential of the cells for photosynthetic carbon dioxide fixation.

Higher light intensities than the optimum for ribulose diphosphate carboxylase synthesis during regreening resulted in a greater relative rate of synthesis on transfer to darkness so that the maximum activity of ribulose diphosphate carboxylase reached in the dark was constant, regardless of light intensity during regreening. A tentative hypothesis to explain these results is that the synthesis of the large and small subunits of ribulose diphosphate carboxylase occur at different stages of cell development, light being necessary for the synthesis of the large subunit and also for regulating the synthesis of the small subunit.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  2. Bovarnick J. G., Schiff J. A., Freedman Z., Egan J. M. Events surrounding the early development of Euglena chloroplasts: cellular origins of chloroplast enzymes in euglena. J Gen Microbiol. 1974 Jul;83(0):63–71. doi: 10.1099/00221287-83-1-63. [DOI] [PubMed] [Google Scholar]
  3. Chan P. H., Wildman S. G. Chloroplast DNA codes for the primary structure of the large subunit of fraction I protein. Biochim Biophys Acta. 1972 Sep 14;277(3):677–680. doi: 10.1016/0005-2787(72)90115-3. [DOI] [PubMed] [Google Scholar]
  4. Criddle R. S., Dau B., Kleinkopf G. E., Huffaker R. C. Differential synthesis of ribulosediphosphate carboxylase subunits. Biochem Biophys Res Commun. 1970 Nov 9;41(3):621–627. doi: 10.1016/0006-291x(70)90058-6. [DOI] [PubMed] [Google Scholar]
  5. Ellis R. J., Blair G. E., Hartley M. R. The nature and function of chloroplast protein synthesis. Biochem Soc Symp. 1973;(38):137–162. [PubMed] [Google Scholar]
  6. Givan A. L., Criddle R. S. Ribulosediphosphate carboxylase from Chlamydomonas reinhardi: purification, properties and its mode of synthesis in the cell. Arch Biochem Biophys. 1972 Mar;149(1):153–163. doi: 10.1016/0003-9861(72)90309-8. [DOI] [PubMed] [Google Scholar]
  7. Gooding L. R., Roy H., Jagendorf A. T. Immunological identification of nascent subunits of wheat ribulose diphosphate carboxylase on ribosomes of both chloroplast and cytoplasmic origin. Arch Biochem Biophys. 1973 Nov;159(1):324–335. doi: 10.1016/0003-9861(73)90458-x. [DOI] [PubMed] [Google Scholar]
  8. Gray J. C., Kerwick R. G. An immunological investigation of the structure and function of ribulose 1,5-bisphosphate carboxylase. Eur J Biochem. 1974 May 15;44(2):481–489. doi: 10.1111/j.1432-1033.1974.tb03506.x. [DOI] [PubMed] [Google Scholar]
  9. Kawashima N., Wildman S. G. Studies on fraction I protein. IV. Mode of inheritance of primary structure in relation to whether chloroplast or nuclear DNA contains the code for a chloroplast protein. Biochim Biophys Acta. 1972 Feb 23;262(1):42–49. doi: 10.1016/0005-2787(72)90217-1. [DOI] [PubMed] [Google Scholar]
  10. McFadden B. A. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. Bacteriol Rev. 1973 Sep;37(3):289–319. doi: 10.1128/br.37.3.289-319.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rutner A. C. Estimation of the molecular weight of ribulose diphosphate carboxylase sub-units. Biochem Biophys Res Commun. 1970 Jun 5;39(5):923–929. doi: 10.1016/0006-291x(70)90412-2. [DOI] [PubMed] [Google Scholar]
  12. Rutner A. C., Lane M. D. Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1967 Aug 23;28(4):531–537. doi: 10.1016/0006-291x(67)90346-4. [DOI] [PubMed] [Google Scholar]
  13. Schiff J. A. The development, inheritance, and origin of the plastid in Euglena. Adv Morphog. 1973;10:265–312. doi: 10.1016/b978-0-12-028610-2.50010-1. [DOI] [PubMed] [Google Scholar]
  14. Sugiyama T., Ito T., Akazawa T. Subunit structure of ribulose 1,5-diphosphate carboxylase from Chlorella ellipsoidea. Biochemistry. 1971 Aug 31;10(18):3406–3411. doi: 10.1021/bi00794a014. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES